OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2322–2331

Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification

Armin Hochreiner, Johannes Bauer-Marschallinger, Peter Burgholzer, Bernhard Jakoby, and Thomas Berer  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2322-2331 (2013)
http://dx.doi.org/10.1364/BOE.4.002322


View Full Text Article

Enhanced HTML    Acrobat PDF (1400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin.

© 2013 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(110.7170) Imaging systems : Ultrasound
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.4480) Lasers and laser optics : Optical amplifiers
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: July 29, 2013
Manuscript Accepted: September 23, 2013
Published: October 2, 2013

Citation
Armin Hochreiner, Johannes Bauer-Marschallinger, Peter Burgholzer, Bernhard Jakoby, and Thomas Berer, "Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification," Biomed. Opt. Express 4, 2322-2331 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  2. G. Rousseau, B. Gauthier, A. Blouin, and J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt.17(6), 061217 (2012). [CrossRef] [PubMed]
  3. V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010). [CrossRef] [PubMed]
  4. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009). [CrossRef] [PubMed]
  5. B. P. Payne, V. Venugopalan, B. B. Mikić, and N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt.8(2), 273–280 (2003). [CrossRef] [PubMed]
  6. S. A. Carp, A. Guerra, S. Q. Duque, and V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett.85(23), 5772–5774 (2004). [CrossRef]
  7. S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt.12(6), 064001 (2007). [CrossRef] [PubMed]
  8. Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008). [CrossRef] [PubMed]
  9. J. D. Hamilton and M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control45(1), 216–235 (1998). [CrossRef] [PubMed]
  10. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008). [CrossRef] [PubMed]
  11. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett.36(20), 3975–3977 (2011). [CrossRef] [PubMed]
  12. T. Berer, A. Hochreiner, S. Zamiri, and P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett.35(24), 4151–4153 (2010). [CrossRef] [PubMed]
  13. A. Hochreiner, T. Berer, H. Grün, M. Leitner, and P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics5(7), 508–517 (2012). [CrossRef] [PubMed]
  14. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express3(1), 16–25 (2012). [CrossRef] [PubMed]
  15. S. Krishnaswami, “Theory and applications of laser-ultrasonic techniques” in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, pp. 435–494, CRC Press, 2003.
  16. J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, and T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE8581, 85812M, 85812M-8 (2013). [CrossRef]
  17. L. J. Busse, “Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(2), 174–179 (1992). [CrossRef] [PubMed]
  18. M. Jaeger, D. Birtill, A. Gertsch, E. O'Flynn, and J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011). [CrossRef]
  19. M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt.17(6), 066007 (2012). [CrossRef] [PubMed]
  20. American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007, Laser Institute of America, Orlando, FL (2007).
  21. E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011). [CrossRef] [PubMed]
  22. L. Li, K. Maslov, G. Ku, and L. V. Wang, “Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies,” Opt. Express17(19), 16450–16455 (2009). [CrossRef] [PubMed]
  23. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010). [CrossRef] [PubMed]
  24. X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited