OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2332–2346

Optical imaging of resting-state functional connectivity in a novel arterial stiffness model

Edgar Guevara, Nataliya Sadekova, Hélène Girouard, and Frédéric Lesage  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2332-2346 (2013)
http://dx.doi.org/10.1364/BOE.4.002332


View Full Text Article

Enhanced HTML    Acrobat PDF (3468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study aims to assess the impact of unilateral increases in carotid stiffness on cortical functional connectivity measures in the resting state. Using a novel animal model of induced arterial stiffness combined with optical intrinsic signals and laser speckle imaging, resting state functional networks derived from hemodynamic signals are investigated for their modulation by isolated changes in stiffness of the right common carotid artery. By means of seed-based analysis, results showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Furthermore, a graph analysis indicated a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex lateral to the treated carotid, which however did not translate in differentiated metabolic activity.

© 2013 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Cardiovascular Applications

History
Original Manuscript: June 3, 2013
Revised Manuscript: September 4, 2013
Manuscript Accepted: September 5, 2013
Published: October 4, 2013

Citation
Edgar Guevara, Nataliya Sadekova, Hélène Girouard, and Frédéric Lesage, "Optical imaging of resting-state functional connectivity in a novel arterial stiffness model," Biomed. Opt. Express 4, 2332-2346 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. World Health Organization, World Health Statistics 2012 (WHO Press, 2012).
  2. R. O. Roberts, D. S. Knopman, Y. E. Geda, R. H. Cha, V. L. Roger, R. C. Petersen, “Coronary heart disease is associated with non-amnestic mild cognitive impairment,” Neurobiol. Aging 31(11), 1894–1902 (2010). [CrossRef]
  3. M. K. Aronson, W. L. Ooi, H. Morgenstern, A. Hafner, D. Masur, H. Crystal, W. H. Frishman, D. Fisher, R. Katzman, “Women, myocardial infarction, and dementia in the very old,” Neurology 40(7), 1102–1106 (1990). [CrossRef]
  4. M. M. Breteler, J. J. Claus, D. E. Grobbee, A. Hofman, “Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study,” BMJ 308(6944), 1604–1608 (1994). [CrossRef]
  5. A. Singh-Manoux, A. R. Britton, M. Marmot, “Vascular disease and cognitive function: evidence from the Whitehall II Study,” J. Am. Geriatr. Soc. 51(10), 1445–1450 (2003). [CrossRef]
  6. M. P. Pase, A. Herbert, N. A. Grima, A. Pipingas, M. F. O’Rourke, “Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis,” Intern. Med. J. 42(7), 808–815 (2012). [CrossRef]
  7. E. L. Glisky, “Changes in Cognitive Function in Human Aging,” in Brain Aging: Models, Methods, and Mechanisms., D. Riddle, ed. (CRC Press, 2007).
  8. J. Sun, S. Tong, G.-Y. Yang, “Reorganization of Brain Networks in Aging and Age-related Diseases,” Aging Dis. 3, 181–193 (2011).
  9. C. Iadecola, “The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia,” Acta Neuropathol. 120(3), 287–296 (2010). [CrossRef]
  10. B. H. Anderton, “Ageing of the brain,” Mech. Ageing Dev. 123(7), 811–817 (2002). [CrossRef]
  11. R. S. Marshall, R. M. Lazar, “Pumps, aqueducts, and drought management: vascular physiology in vascular cognitive impairment,” Stroke 42(1), 221–226 (2011). [CrossRef]
  12. R. S. Marshall, R. M. Lazar, J. Pile-Spellman, W. L. Young, D. H. Duong, S. Joshi, N. Ostapkovich, “Recovery of brain function during induced cerebral hypoperfusion,” Brain 124(6), 1208–1217 (2001). [CrossRef]
  13. F. M. Faraci, “Protecting against vascular disease in brain,” Am. J. Physiol. Heart Circ. Physiol. 300(5), H1566–H1582 (2011). [CrossRef]
  14. V. Bolduc, E. Baraghis, N. Duquette, N. Thorin-Trescases, J. Lambert, F. Lesage, E. Thorin, “Catechin prevents severe dyslipidemia-associated changes in wall biomechanics of cerebral arteries in LDLr−/−:hApoB+/+ mice and improves cerebral blood flow,” Am. J. Physiol. Heart Circ. Physiol. 302(6), H1330–H1339 (2012). [CrossRef]
  15. D. A. Gusnard, M. E. Raichle, “Searching for a baseline: functional imaging and the resting human brain,” Nat. Rev. Neurosci. 2(10), 685–694 (2001). [CrossRef]
  16. M. D. Greicius, B. Krasnow, A. L. Reiss, V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003). [CrossRef]
  17. M. D. Fox, M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007). [CrossRef]
  18. M. P. van den Heuvel, H. E. Hulshoff Pol, “Exploring the brain network: A review on resting-state fMRI functional connectivity,” Eur. Neuropsychopharmacol. 20(8), 519–534 (2010). [CrossRef]
  19. D. M. Cole, S. M. Smith, C. F. Beckmann, “Advances and pitfalls in the analysis and interpretation of resting-state FMRI data,” Front Syst Neurosci 4, 8 (2010).
  20. R. L. Buckner, J. R. Andrews-Hanna, D. L. Schacter, “The brain’s default network: anatomy, function, and relevance to disease,” Ann. N. Y. Acad. Sci. 1124(1), 1–38 (2008). [CrossRef]
  21. T. Gili, M. Cercignani, L. Serra, R. Perri, F. Giove, B. Maraviglia, C. Caltagirone, M. Bozzali, “Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution,” J. Neurol. Neurosurg. Psychiatry 82(1), 58–66 (2011). [CrossRef]
  22. M. D. Greicius, G. Srivastava, A. L. Reiss, V. Menon, “Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI,” Proc. Natl. Acad. Sci. U.S.A. 101(13), 4637–4642 (2004). [CrossRef]
  23. Y. He, Z. Chen, G. Gong, A. Evans, “Neuronal networks in Alzheimer’s disease,” Neuroscientist 15(4), 333–350 (2009). [CrossRef]
  24. Y. Sun, L. Qin, Y. Zhou, Q. Xu, L. Qian, J. Tao, J. Xu, “Abnormal functional connectivity in patients with vascular cognitive impairment, no dementia: a resting-state functional magnetic resonance imaging study,” Behav. Brain Res. 223(2), 388–394 (2011). [CrossRef]
  25. A. G. van Norden, K. F. de Laat, R. A. Gons, I. W. van Uden, E. J. van Dijk, L. J. van Oudheusden, R. A. Esselink, B. R. Bloem, B. G. van Engelen, M. J. Zwarts, I. Tendolkar, M. G. Olde-Rikkert, M. J. van der Vlugt, M. P. Zwiers, D. G. Norris, F.-E. de Leeuw, “Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol,” BMC Neurol. 11(1), 29 (2011). [CrossRef]
  26. H.-L. Cheng, C.-J. Lin, B.-W. Soong, P.-N. Wang, F.-C. Chang, Y.-T. Wu, K.-H. Chou, C.-P. Lin, P.-C. Tu, I.-H. Lee, “Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis,” Stroke 43(10), 2567–2573 (2012). [CrossRef]
  27. N. Sadekova, D. Vallerand, E. Guevara, F. Lesage, H. Girouard, “Carotid calcification in mice: a new model to study the effects of arterial stiffness on the brain,” J Am Heart Assoc. Manuscript ID JAHA/2013/000224–T2 (posted May 17 2013, in press).
  28. O. Moldestad, P. Karlsen, S. Molden, J. F. Storm, “Tracheotomy improves experiment success rate in mice during urethane anesthesia and stereotaxic surgery,” J. Neurosci. Methods 176(2), 57–62 (2009). [CrossRef]
  29. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef]
  30. S. Dubeau, G. Ferland, P. Gaudreau, E. Beaumont, F. Lesage, “Cerebrovascular hemodynamic correlates of aging in the Lou/c rat: A model of healthy aging,” Neuroimage 56(4), 1892–1901 (2011). [CrossRef]
  31. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef]
  32. A. K. Dunn, A. Devor, A. M. Dale, D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27(2), 279–290 (2005). [CrossRef]
  33. M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000). [CrossRef]
  34. S. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/ .
  35. N. Brieu, E. Beaumont, S. Dubeau, J. Cohen-Adad, F. Lesage, “Characterization of the hemodynamic response in the rat lumbar spinal cord using intrinsic optical imaging and laser speckle,” J. Neurosci. Methods 191(2), 151–157 (2010). [CrossRef]
  36. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001). [CrossRef]
  37. D. A. Boas, A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef]
  38. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001). [CrossRef]
  39. J. Luckl, W. Baker, Z.-H. Sun, T. Durduran, A. G. Yodh, J. H. Greenberg, “The biological effect of contralateral forepaw stimulation in rat focal cerebral ischemia: a multispectral optical imaging study,” Front Neuroenergetics 2, 19 (2010).
  40. J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, Y. Zheng, “Spectroscopic Analysis of Neural Activity in Brain: Increased Oxygen Consumption Following Activation of Barrel Cortex,” Neuroimage 12(6), 664–675 (2000). [CrossRef]
  41. M. Jones, J. Berwick, D. Johnston, J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001). [CrossRef]
  42. A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, D. M. Holtzman, “Bidirectional Relationship between Functional Connectivity and Amyloid-β Deposition in Mouse Brain,” J. Neurosci. 32(13), 4334–4340 (2012). [CrossRef]
  43. B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS ONE 6(1), e16322 (2011). [CrossRef]
  44. K. J. Friston, J. T. Ashburner, S. J. Kiebel, T. E. Nichols, and W. D. Penny, Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st ed. (Academic Press, 2006).
  45. V. Latora, M. Marchiori, “Efficient Behavior of Small-World Networks,” Phys. Rev. Lett. 87(19), 198701 (2001). [CrossRef]
  46. S. Achard, E. Bullmore, “Efficiency and Cost of Economical Brain Functional Networks,” PLOS Comput. Biol. 3(2), e17 (2007). [CrossRef]
  47. D. S. Bassett, E. Bullmore, “Small-world brain networks,” Neuroscientist 12(6), 512–523 (2006). [CrossRef]
  48. S. Whitfield-Gabrieli, A. Nieto-Castanon, “Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks,” Brain Connect 2(3), 125–141 (2012). [CrossRef]
  49. F. Pukelsheim, “The Three Sigma Rule,” Am. Stat. 48, 88 (1994).
  50. J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, J. Kertész, “Generalizations of the clustering coefficient to weighted complex networks,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 027105 (2007). [CrossRef]
  51. P. Thevenaz, U. E. Ruttimann, M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited