OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2362–2375

Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography

Meng-Tsan Tsai, Chih-Hsun Yang, Su-Chin Shen, Ya-Ju Lee, Feng-Yu Chang, and Cheng-Shin Feng  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2362-2375 (2013)
http://dx.doi.org/10.1364/BOE.4.002362


View Full Text Article

Enhanced HTML    Acrobat PDF (9795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fractional photothermolysis induced by non-ablative fractional lasers (NAFLs) or ablative fractional lasers (AFLs) can remodel the skin, regenerate collagen, and remove tumor tissue. However, fractional laser treatments may result in severe side effects, and multiple treatments are required to achieve the expected outcome. Thus, the treatment outcome and downtime after fractional laser treatments are key issues to determine the following treatment strategy. In this study, an optical coherence tomography (OCT) system was implemented for in vivo studies of wound healing after NAFL and AFL treatments. According to the OCT scanning results, the laser-induced photothermolysis including volatilization and coagulation could be morphologically identified. To continue monitoring the wound healing process, the treated regions were scanned with OCT at different time points, and the en-face images at various tissue depths were extracted from three-dimensional OCT images. Furthermore, to quantitatively evaluate the morphological changes at different tissue depths during wound healing, an algorithm was developed to distinguish the backscattering properties of untreated and treated tissues. The results showed that the coagulation damage induced by the NAFLs could be rapidly healed in 6 days. In contrast, the tissue volatilization induced by AFLs required a longer recovery time of 14 days. In conclusion, this study establishes the feasibility of this methodology as a means of clinically monitoring treatment outcomes and wound healing after fractional laser treatments.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.1870) Medical optics and biotechnology : Dermatology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.1350) Scattering : Backscattering
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Dermatological Applications

History
Original Manuscript: July 30, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: October 1, 2013
Published: October 7, 2013

Citation
Meng-Tsan Tsai, Chih-Hsun Yang, Su-Chin Shen, Ya-Ju Lee, Feng-Yu Chang, and Cheng-Shin Feng, "Monitoring of wound healing process of human skin after fractional laser treatments with optical coherence tomography," Biomed. Opt. Express 4, 2362-2375 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. S. Alster and S. Garg, “Treatment of facial rhytides with a high-energy pulsed carbon dioxide laser,” Plast. Reconstr. Surg.98(5), 791–794 (1996). [CrossRef] [PubMed]
  2. C. B. Zachary, “Modulating the Er:YAG laser,” Lasers Surg. Med.26(2), 223–226 (2000). [CrossRef] [PubMed]
  3. E. V. Ross, F. P. Sajben, J. Hsia, D. Barnette, C. H. Miller, and J. R. McKinlay, “Nonablative skin remodeling: selective dermal heating with a mid-infrared laser and contact cooling combination,” Lasers Surg. Med.26(2), 186–195 (2000). [CrossRef] [PubMed]
  4. D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers Surg. Med.34(5), 426–438 (2004). [CrossRef] [PubMed]
  5. H. J. Laubach, Z. Tannous, R. R. Anderson, and D. Manstein, “Skin responses to fractional photothermolysis,” Lasers Surg. Med.38(2), 142–149 (2006). [CrossRef] [PubMed]
  6. B. M. Hantash, V. P. Bedi, K. F. Chan, and C. B. Zachary, “Ex vivo histological characterization of a novel ablative fractional resurfacing device,” Lasers Surg. Med.39(2), 87–95 (2007). [CrossRef] [PubMed]
  7. A. Z. Freitas, L. R. Freschi, R. E. Samad, D. M. Zezell, S. C. Gouw-Soares, and N. D. Vieira., “Determination of ablation threshold for composite resins and amalgam irradiated with femtosecond laser pulses,” Laser Phys. Lett.7(3), 236–241 (2010). [CrossRef]
  8. C. C. Wang, C. L. Huang, S. C. Lee, Y. M. Sue, and F. J. Leu, “Treatment of cosmetic tattoos with nonablative fractional laser in an animal model: A novel method with histopathologic evidence,” Lasers Surg. Med.45(2), 116–122 (2013). [CrossRef] [PubMed]
  9. V. Prabhu, S. B. S. Rao, S. Chandra, P. Kumar, L. Rao, V. Guddattu, K. Satyamoorthy, and K. K. Mahato, “Spectroscopic and histological evaluation of wound healing progression following Low Level Laser Therapy (LLLT),” J Biophotonics5(2), 168–184 (2012). [CrossRef] [PubMed]
  10. C. P. Pan, Y. H. Shi, K. Amin, C. S. Greenberg, Z. Haroon, and G. W. Faris, “Wound healing monitoring using near infrared fluorescent fibrinogen,” Biomed. Opt. Express1(1), 285–294 (2010), http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-1-1-285 . [CrossRef] [PubMed]
  11. O. F. Stumpp, V. P. Bedi, D. Wyatt, D. Lac, Z. Rahman, and K. F. Chan, “In vivo confocal imaging of epidermal cell migration and dermal changes post nonablative fractional resurfacing: study of the wound healing process with corroborated histopathologic evidence,” J. Biomed. Opt.14(2), 024018 (2009). [CrossRef] [PubMed]
  12. C. Longo, M. Galimberti, B. De Pace, G. Pellacani, and P. L. Bencini, “Laser skin rejuvenation: epidermal changes and collagen remodeling evaluated by in vivo confocal microscopy,” Lasers Med. Sci.28(3), 769–776 (2013). [CrossRef] [PubMed]
  13. S. Lange-Asschenfeldt, A. Bob, D. Terhorst, M. Ulrich, J. Fluhr, G. Mendez, H. J. Roewert-Huber, E. Stockfleth, and B. Lange-Asschenfeldt, “Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing,” J. Biomed. Opt.17(7), 076016 (2012). [CrossRef] [PubMed]
  14. E. C. Sattler, K. Poloczek, R. Kästle, and J. Welzel, “Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy,” J. Am. Acad. Dermatol.69(4), e165–e173 (2013). [CrossRef] [PubMed]
  15. G. Deka, W. W. Wu, and F. J. Kao, “In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging,” J. Biomed. Opt.18(6), 061222 (2013). [CrossRef]
  16. M. J. Cobb, Y. C. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. D. Li, “Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.11(6), 064002 (2006). [CrossRef] [PubMed]
  17. W. G. Jung, B. Kao, K. M. Kelly, L. H. L. Liaw, J. S. Nelson, and Z. P. Chen, “Optical coherence tomography for in vitro monitoring of wound healing after laser irradiation,” IEEE J. Sel. Top. Quantum Electron.9(2), 222–226 (2003). [CrossRef]
  18. A. Barui, P. Banerjee, R. Patra, R. K. Das, S. Dhara, P. K. Dutta, and J. Chatterjee, “Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16(2), 026010 (2011). [CrossRef] [PubMed]
  19. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  20. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007). [CrossRef]
  21. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express11(26), 3598–3604 (2003). [CrossRef] [PubMed]
  22. M. Wojtkowski, V. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-11-2404 . [CrossRef] [PubMed]
  23. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-10-2770&origin=search . [CrossRef] [PubMed]
  24. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 . [CrossRef] [PubMed]
  25. M. T. Tsai, H. C. Lee, C. K. Lee, C. H. Yu, H. M. Chen, C. P. Chiang, C. C. Chang, Y. M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express16(20), 15847–15862 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-20-15847 . [CrossRef] [PubMed]
  26. M. T. Tsai, F. Y. Chang, C. K. Lee, T. T. Chi, K. M. Yang, L. Y. Lin, J. T. Wu, and C. C. Yang, “Observations of cardiac beating behaviors of wild-type and mutant Drosophilae with optical coherence tomography,” J Biophotonics4(9), 610–618 (2011). [PubMed]
  27. N. Iftimia, R. D. Ferguson, M. Mujat, A. H. Patel, E. Z. Zhang, W. Fox, and M. Rajadhyaksha, “Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment,” Biomed. Opt. Express4(5), 680–695 (2013). [CrossRef] [PubMed]
  28. A. Alex, J. Weingast, M. Weinigel, M. Kellner-Höfer, R. Nemecek, M. Binder, H. Pehamberger, K. König, and W. Drexler, “Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology,” J Biophotonics6(4), 352–362 (2013). [CrossRef] [PubMed]
  29. G. J. Liu, W. C. Jia, V. T. Sun, B. Choi, and Z. P. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7694&origin=search . [CrossRef] [PubMed]
  30. S. Sakai, M. Yamanari, Y. Lim, N. Nakagawa, and Y. Yasuno, “In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2(9), 2623–2631 (2011). [CrossRef] [PubMed]
  31. V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med.39(9), 687–695 (2007). [CrossRef] [PubMed]
  32. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. P. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004). [CrossRef] [PubMed]
  33. Y. M. Liew, R. A. McLaughlin, P. J. Gong, F. M. Wood, and D. D. Sampson, “In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography,” J. Biomed. Opt.18(6), 061213 (2013). [CrossRef] [PubMed]
  34. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008). [CrossRef] [PubMed]
  35. M. Ohmi, M. Tanigawa, A. Yamada, Y. Ueda, and M. Haruna, “Dynamic analysis of internal and external mental sweating by optical coherence tomography,” J. Biomed. Opt.14(1), 014026 (2009). [CrossRef] [PubMed]
  36. M. T. Tsai, T. T. Chi, H. L. Liu, F. Y. Chang, C. H. Yang, C. K. Lee, and C. C. Yang, “Microvascular imaging using swept-source optical coherence tomography with single-channel acquisition,” Appl. Phys. Express4(9), 097001 (2011). [CrossRef]
  37. Z. Tannous, “Fractional resurfacing,” Clin. Dermatol.25(5), 480–486 (2007). [CrossRef] [PubMed]
  38. R. F. Pereira, C. C. Barrias, P. L. Granja, and P. J. Bartolo, “Advanced biofabrication strategies for skin regeneration and repair,” Nanomedicine (Lond)8(4), 603–621 (2013). [CrossRef] [PubMed]
  39. S. Grunewald, M. Bodendorf, M. Llles, M. Kendler, J. C. Simon, and U. Paasch, “In vivo wound healing and dermal matrix remodeling in response to fractional CO2 laser intervention: Clinicopathological correlation in non-facial skin,” Int. J. Hyperthermia27(8), 811–818 (2011).
  40. B. M. Hantash and M. B. Mahmood, “Fractional photothermolysis: A novel aesthetic laser surgery modality,” Dermatol. Surg.33(5), 525–534 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited