OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2383–2395

Automated quantification of lung structures from optical coherence tomography images

Alex M. Pagnozzi, Rodney W. Kirk, Brendan F. Kennedy, David D. Sampson, and Robert A. McLaughlin  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2383-2395 (2013)
http://dx.doi.org/10.1364/BOE.4.002383


View Full Text Article

Enhanced HTML    Acrobat PDF (3727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Characterization of the size of lung structures can aid in the assessment of a range of respiratory diseases. In this paper, we present a fully automated segmentation and quantification algorithm for the delineation of large numbers of lung structures in optical coherence tomography images, and the characterization of their size using the stereological measure of median chord length. We demonstrate this algorithm on scans acquired with OCT needle probes in fresh, ex vivo tissues from two healthy animal models: pig and rat. Automatically computed estimates of lung structure size were validated against manual measures. In addition, we present 3D visualizations of the lung structures using the segmentation calculated for each data set. This method has the potential to provide an in vivo indicator of structural remodeling caused by a range of respiratory diseases, including chronic obstructive pulmonary disease and pulmonary fibrosis.

© 2013 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: September 26, 2013
Published: October 9, 2013

Citation
Alex M. Pagnozzi, Rodney W. Kirk, Brendan F. Kennedy, David D. Sampson, and Robert A. McLaughlin, "Automated quantification of lung structures from optical coherence tomography images," Biomed. Opt. Express 4, 2383-2395 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Turato, R. Zuin, and M. Saetta, “Pathogenesis and pathology of COPD,” Respiration68(2), 117–128 (2001). [CrossRef] [PubMed]
  2. T. C. Kravis, A. Ahmed, T. E. Brown, J. D. Fulmer, and R. G. Crystal, “Pathogenic mechanisms in pulmonary fibrosis: collagen-induced migration inhibition factor production and cytotoxicity mediated by lymphocytes,” J. Clin. Invest.58(5), 1223–1232 (1976). [CrossRef] [PubMed]
  3. E. P. Trulock, L. B. Edwards, D. O. Taylor, M. M. Boucek, B. M. Keck, and M. I. Hertz, “Registry of the International Society for Heart and Lung Transplantation: twenty-second official adult lung and heart-lung transplant report--2005,” J. Heart Lung Transplant.24(8), 956–967 (2005). [CrossRef] [PubMed]
  4. R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, J. Abraham, T. Adair, R. Aggarwal, S. Y. Ahn, M. Alvarado, H. R. Anderson, L. M. Anderson, K. G. Andrews, C. Atkinson, L. M. Baddour, S. Barker-Collo, D. H. Bartels, M. L. Bell, E. J. Benjamin, D. Bennett, K. Bhalla, B. Bikbov, A. Bin Abdulhak, G. Birbeck, F. Blyth, I. Bolliger, S. Boufous, C. Bucello, M. Burch, P. Burney, J. Carapetis, H. Chen, D. Chou, S. S. Chugh, L. E. Coffeng, S. D. Colan, S. Colquhoun, K. E. Colson, J. Condon, M. D. Connor, L. T. Cooper, M. Corriere, M. Cortinovis, K. C. de Vaccaro, W. Couser, B. C. Cowie, M. H. Criqui, M. Cross, K. C. Dabhadkar, N. Dahodwala, D. De Leo, L. Degenhardt, A. Delossantos, J. Denenberg, D. C. Des Jarlais, S. D. Dharmaratne, E. R. Dorsey, T. Driscoll, H. Duber, B. Ebel, P. J. Erwin, P. Espindola, M. Ezzati, V. Feigin, A. D. Flaxman, M. H. Forouzanfar, F. G. Fowkes, R. Franklin, M. Fransen, M. K. Freeman, S. E. Gabriel, E. Gakidou, F. Gaspari, R. F. Gillum, D. Gonzalez-Medina, Y. A. Halasa, D. Haring, J. E. Harrison, R. Havmoeller, R. J. Hay, B. Hoen, P. J. Hotez, D. Hoy, K. H. Jacobsen, S. L. James, R. Jasrasaria, S. Jayaraman, N. Johns, G. Karthikeyan, N. Kassebaum, A. Keren, J. P. Khoo, L. M. Knowlton, O. Kobusingye, A. Koranteng, R. Krishnamurthi, M. Lipnick, S. E. Lipshultz, S. L. Ohno, J. Mabweijano, M. F. MacIntyre, L. Mallinger, L. March, G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos, B. M. Mayosi, J. H. McAnulty, M. M. McDermott, J. McGrath, G. A. Mensah, T. R. Merriman, C. Michaud, M. Miller, T. R. Miller, C. Mock, A. O. Mocumbi, A. A. Mokdad, A. Moran, K. Mulholland, M. N. Nair, L. Naldi, K. M. Narayan, K. Nasseri, P. Norman, M. O’Donnell, S. B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, B. Pahari, J. D. Pandian, A. P. Rivero, R. P. Padilla, F. Perez-Ruiz, N. Perico, D. Phillips, K. Pierce, C. A. Pope, E. Porrini, F. Pourmalek, M. Raju, D. Ranganathan, J. T. Rehm, D. B. Rein, G. Remuzzi, F. P. Rivara, T. Roberts, F. R. De León, L. C. Rosenfeld, L. Rushton, R. L. Sacco, J. A. Salomon, U. Sampson, E. Sanman, D. C. Schwebel, M. Segui-Gomez, D. S. Shepard, D. Singh, J. Singleton, K. Sliwa, E. Smith, A. Steer, J. A. Taylor, B. Thomas, I. M. Tleyjeh, J. A. Towbin, T. Truelsen, E. A. Undurraga, N. Venketasubramanian, L. Vijayakumar, T. Vos, G. R. Wagner, M. Wang, W. Wang, K. Watt, M. A. Weinstock, R. Weintraub, J. D. Wilkinson, A. D. Woolf, S. Wulf, P. H. Yeh, P. Yip, A. Zabetian, Z. J. Zheng, A. D. Lopez, C. J. Murray, M. A. AlMazroa, and Z. A. Memish, “Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010,” Lancet380(9859), 2095–2128 (2012). [CrossRef] [PubMed]
  5. H. Parameswaran, A. Majumdar, S. Ito, A. M. Alencar, and B. Suki, “Quantitative characterization of airspace enlargement in emphysema,” J. Appl. Physiol.100(1), 186–193 (2006). [CrossRef] [PubMed]
  6. E. R. Weibel, C. C. W. Hsia, and M. Ochs, “How much is there really? Why stereology is essential in lung morphometry,” J. Appl. Physiol.102(1), 459–467 (2006). [CrossRef] [PubMed]
  7. L. Knudsen, E. R. Weibel, H. J. G. Gundersen, F. V. Weinstein, and M. Ochs, “Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach,” J. Appl. Physiol.108(2), 412–421 (2010). [CrossRef] [PubMed]
  8. D. S. Faffe and W. A. Zin, “Lung parenchymal mechanics in health and disease,” Physiol. Rev.89(3), 759–775 (2009). [CrossRef] [PubMed]
  9. L. P. Hariri, M. B. Applegate, M. Mino-Kenudson, E. J. Mark, B. D. Medoff, A. D. Luster, B. E. Bouma, G. J. Tearney, and M. J. Suter, “Volumetric optical frequency domain imaging of pulmonary pathology with precise correlation to histopathology,” Chest143(1), 64–74 (2013). [CrossRef] [PubMed]
  10. S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window,” J. Biomed. Opt.15(1), 016030 (2010). [CrossRef] [PubMed]
  11. M. Mertens, A. Tabuchi, S. Meissner, A. Krueger, K. Schirrmann, U. Kertzscher, A. R. Pries, A. S. Slutsky, E. Koch, and W. M. Kuebler, “Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse,” Crit. Care Med.37(9), 2604–2611 (2009). [CrossRef] [PubMed]
  12. J. Bickenbach, R. Dembinski, M. Czaplik, S. Meissner, A. Tabuchi, M. Mertens, L. Knels, W. Schroeder, P. Pelosi, E. Koch, W. M. Kuebler, R. Rossaint, and R. Kuhlen, “Comparison of two in vivo microscopy techniques to visualize alveolar mechanics,” J. Clin. Monit. Comput.23(5), 323–332 (2009). [CrossRef] [PubMed]
  13. R. A. McLaughlin, X. Yang, B. C. Quirk, D. Lorenser, R. W. Kirk, P. B. Noble, and D. D. Sampson, “Static and dynamic imaging of alveoli using optical coherence tomography needle probes,” J. Appl. Physiol.113(6), 967–974 (2012). [CrossRef] [PubMed]
  14. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011). [CrossRef] [PubMed]
  15. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  16. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  17. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17(26), 23719–23728 (2009). [CrossRef] [PubMed]
  18. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” in MICCAI 2009, G-Z Yang, D. J. Hawkes, D. Rueckert, A. Noble, C. J. Taylor, ed. (Springer, Heidelberg, 2009), pp. 649–656.
  19. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt.12(4), 041206 (2007). [CrossRef] [PubMed]
  20. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys.79(1), 12–49 (1988). [CrossRef]
  21. A. Curatolo, B. F. Kennedy, D. D. Sampson, and T. R. Hillman, “Speckle in optical coherence tomography,” in Advanced Biophotonics: Tissue Optical Sectioning, V. V. Tuchin and R. K. Wang, eds. (Taylor & Francis, 2013), pp. 183–249.
  22. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef] [PubMed]
  23. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007). [CrossRef] [PubMed]
  24. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett.31(2), 190–192 (2006). [CrossRef] [PubMed]
  25. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010). [CrossRef] [PubMed]
  26. B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011). [CrossRef] [PubMed]
  27. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett.29(24), 2878–2880 (2004). [CrossRef] [PubMed]
  28. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol.47(4), 641–655 (2002). [CrossRef] [PubMed]
  29. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal.12(7), 629–639 (1990). [CrossRef]
  30. D. C. Fernandez, “Delineating fluid-filled region boundaries in optical coherence tomography images of the retina,” IEEE Trans. Med. Imaging24(8), 929–945 (2005). [CrossRef]
  31. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17(2), 733–746 (2009). [CrossRef] [PubMed]
  32. D. Lopes, “Anisotropic diffusion (Perona & Malik),” http://www.mathworks.com.au/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik .
  33. C. Li, “Level set for image segmentation,” http://www.mathworks.com.au/matlabcentral/fileexchange/12711-level-set-for-image-segmentation .
  34. C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, “A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI,” IEEE Trans. Image Process.20(7), 2007–2016 (2011). [CrossRef] [PubMed]
  35. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, 1982).
  36. H. Lum and W. Mitzner, “A species comparison of alveolar size and surface forces,” J. Appl. Physiol.62(5), 1865–1871 (1987). [PubMed]
  37. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011). [CrossRef] [PubMed]
  38. L. Scolaro, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, and D. D. Sampson, “High-sensitivity anastigmatic imaging needle for optical coherence tomography,” Opt. Lett.37(24), 5247–5249 (2012). [CrossRef] [PubMed]
  39. A. E. Lefohn, J. E. Cates, and R. T. Whitaker, “Interactive, GPU-based level sets for 3D brain tumor segmentation,” in MICCAI 2003, R. E. Ellis, T. M. Peters, ed. (Springer, Heidelberg, 2003), pp. 564–572.
  40. R. T. Whitaker, “A level-set approach to 3D reconstruction from range data,” Int. J. Comput. Vis.29(3), 203–231 (1998). [CrossRef]
  41. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int. J. Comput. Vis.1(4), 321–331 (1988). [CrossRef]
  42. C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: a new variational formulation,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 430–436.
  43. M. Ochs, J. R. Nyengaard, A. Jung, L. Knudsen, M. Voigt, T. Wahlers, J. Richter, and H. J. G. Gundersen, “The number of alveoli in the human lung,” Am. J. Respir. Crit. Care Med.169(1), 120–124 (2004). [CrossRef] [PubMed]
  44. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010). [CrossRef] [PubMed]
  45. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012). [CrossRef] [PubMed]
  46. L. Chin, X. Yang, R. A. McLaughlin, P. B. Noble, and D. D. Sampson, “En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.18(6), 066005 (2013). [CrossRef] [PubMed]
  47. J. P. Williamson, R. A. McLaughlin, W. J. Noffsinger, A. L. James, V. A. Baker, A. Curatolo, J. J. Armstrong, A. Regli, K. L. Shepherd, G. B. Marks, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography,” Am. J. Respir. Crit. Care Med.183(5), 612–619 (2011). [CrossRef] [PubMed]
  48. H. Dayman, “Mechanics of airflow in health and in emphysema,” J. Clin. Invest.30(11), 1175–1190 (1951). [CrossRef] [PubMed]
  49. S. Nava and F. Rubini, “Lung and chest wall mechanics in ventilated patients with end stage idiopathic pulmonary fibrosis,” Thorax54(5), 390–395 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: AVI (6805 KB)     
» Media 2: AVI (8440 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited