OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2477–2490

In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy

Jan Laufer, Amit Jathoul, Martin Pule, and Paul Beard  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2477-2490 (2013)
http://dx.doi.org/10.1364/BOE.4.002477


View Full Text Article

Enhanced HTML    Acrobat PDF (1364 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Genetically expressed fluorescent proteins have been shown to provide photoacoustic contrast. However, they can be limited by low photoacoustic generation efficiency and low optical absorption at red and near infrared wavelengths, thus limiting their usefulness in mammalian small animal models. In addition, many fluorescent proteins exhibit low photostability due to photobleaching and transient absorption effects. In this study, we explore these issues by synthesizing and characterizing a range of commonly used fluorescent proteins (dsRed, mCherry, mNeptune, mRaspberry, AQ143, E2 Crimson) and novel non-fluorescent chromoproteins (aeCP597 and cjBlue and a non-fluorescent mutant of E2 Crimson). The photoacoustic spectra, photoacoustic generation efficiency and photostability of each fluorescent protein and chromoprotein were measured. Compared to the fluorescent proteins, the chromoproteins were found to exhibit higher photoacoustic generation efficiency due to the absence of radiative relaxation and ground state depopulation, and significantly higher photostability. The feasibility of converting an existing fluorescent protein into a non-fluorescent chromoprotein via mutagenesis was also demonstrated. The chromoprotein mutant exhibited greater photoacoustic signal generation efficiency and better agreement between the photoacoustic and the specific extinction coefficient spectra than the original fluorescent protein. Lastly, the genetic expression of a chromoprotein in mammalian cells was demonstrated. This study suggests that chromoproteins may have potential for providing genetically encoded photoacoustic contrast.

© 2013 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(300.0300) Spectroscopy : Spectroscopy
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: August 7, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 1, 2013
Published: October 14, 2013

Virtual Issues
November 22, 2013 Spotlight on Optics

Citation
Jan Laufer, Amit Jathoul, Martin Pule, and Paul Beard, "In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy," Biomed. Opt. Express 4, 2477-2490 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2477


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol.49(3), R13–R48 (2004). [CrossRef] [PubMed]
  2. Y. Yu, A. J. Annala, J. R. Barrio, T. Toyokuni, N. Satyamurthy, M. Namavari, S. R. Cherry, M. E. Phelps, H. R. Herschman, and S. S. Gambhir, “Quantification of target gene expression by imaging reporter gene expression in living animals,” Nat. Med.6(8), 933–937 (2000). [CrossRef] [PubMed]
  3. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011). [CrossRef] [PubMed]
  4. A. Krumholz, S. J. Vanvickle-Chavez, J. Yao, T. P. Fleming, W. E. Gillanders, and L. V. Wang, “Photoacoustic microscopy of tyrosinase reporter gene in vivo,” J. Biomed. Opt.16(8), 080503 (2011). [CrossRef] [PubMed]
  5. J. Laufer, A. Jathoul, P. Johnson, E. Zhang, M. Lythgoe, R. B. Pedley, M. Pule, and P. Beard, “In vivo photoacoustic imaging of tyrosinase expressing tumours in mice,” Proc. SPIE8223, 82230M, 82230M-5 (2012). [CrossRef]
  6. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt.12(2), 020504 (2007). [CrossRef] [PubMed]
  7. X. Cai, L. Li, A. Krumholz, Z. Guo, T. N. Erpelding, C. Zhang, Y. Zhang, Y. Xia, and L. V. Wang, “Multi-scale molecular photoacoustic tomography of gene expression,” PLoS ONE7(8), e43999 (2012). [CrossRef] [PubMed]
  8. R. L. Strack, B. Hein, D. Bhattacharyya, S. W. Hell, R. J. Keenan, and B. S. Glick, “A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling,” Biochemistry48(35), 8279–8281 (2009). [CrossRef] [PubMed]
  9. M. R. Soboleski, J. Oaks, and W. P. Halford, “Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells,” FASEB J.19(3), 440–442 (2005). [PubMed]
  10. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009). [CrossRef]
  11. G. S. Filonov, K. D. Piatkevich, L.-M. Ting, J. Zhang, K. Kim, and V. V. Verkhusha, “Bright and stable near-infrared fluorescent protein for in vivo imaging,” Nat. Biotechnol.29(8), 757–761 (2011). [CrossRef] [PubMed]
  12. G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe - supporting information,” Angew. Chem.124(6), 1477–1480 (2012). [CrossRef]
  13. J. Hendrix, C. Flors, P. Dedecker, J. Hofkens, and Y. Engelborghs, “Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy,” Biophys. J.94(10), 4103–4113 (2008). [CrossRef] [PubMed]
  14. C. Blum and V. Subramaniam, “Single-molecule spectroscopy of fluorescent proteins,” Anal. Bioanal. Chem.393(2), 527–541 (2009). [CrossRef] [PubMed]
  15. D. Stoner-Ma, A. A. Jaye, P. Matousek, M. Towrie, S. R. Meech, and P. J. Tonge, “Observation of excited-state proton transfer in green fluorescent protein using ultrafast vibrational spectroscopy,” J. Am. Chem. Soc.127(9), 2864–2865 (2005). [CrossRef] [PubMed]
  16. G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral,” Proc. Natl. Acad. Sci. U.S.A.97(22), 11984–11989 (2000). [CrossRef] [PubMed]
  17. N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol.22(12), 1567–1572 (2004). [CrossRef] [PubMed]
  18. M. Z. Lin, M. R. McKeown, H.-L. Ng, T. A. Aguilera, N. C. Shaner, R. E. Campbell, S. R. Adams, L. A. Gross, W. Ma, T. Alber, and R. Y. Tsien, “Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals,” Chem. Biol.16(11), 1169–1179 (2009). [CrossRef] [PubMed]
  19. L. Wang, W. C. Jackson, P. A. Steinbach, and R. Y. Tsien, “Evolution of new nonantibody proteins via iterative somatic hypermutation,” Proc. Natl. Acad. Sci. U.S.A.101(48), 16745–16749 (2004). [CrossRef] [PubMed]
  20. M. A. Shkrob, Y. G. Yanushevich, D. M. Chudakov, N. G. Gurskaya, Y. A. Labas, S. Y. Poponov, N. N. Mudrik, S. Lukyanov, and K. A. Lukyanov, “Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina,” Biochem. J.392(3), 649–654 (2005). [CrossRef] [PubMed]
  21. W. P. Stemmer, A. Crameri, K. D. Ha, T. M. Brennan, and H. L. Heyneker, “Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides,” Gene164(1), 49–53 (1995). [CrossRef] [PubMed]
  22. A. N. Warrens, M. D. Jones, and R. I. Lechler, “Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest,” Gene186(1), 29–35 (1997). [CrossRef] [PubMed]
  23. B. J. Bevis and B. S. Glick, “Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed),” Nat. Biotechnol.20(1), 83–87 (2002). [CrossRef] [PubMed]
  24. D. Shcherbo, I. I. Shemiakina, A. V. Ryabova, K. E. Luker, B. T. Schmidt, E. A. Souslova, T. V. Gorodnicheva, L. Strukova, K. M. Shidlovskiy, O. V. Britanova, A. G. Zaraisky, K. A. Lukyanov, V. B. Loschenov, G. D. Luker, and D. M. Chudakov, “Near-infrared fluorescent proteins,” Nat. Methods7(10), 827–829 (2010). [CrossRef] [PubMed]
  25. M. C. Y. Chan, S. Karasawa, H. Mizuno, I. Bosanac, D. Ho, G. G. Privé, A. Miyawaki, and M. Ikura, “Structural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicus,” J. Biol. Chem.281(49), 37813–37819 (2006). [CrossRef] [PubMed]
  26. M. E. Bulina, D. M. Chudakov, N. N. Mudrik, and K. A. Lukyanov, “Interconversion of Anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis,” BMC Biochem.3(1), 7 (2002). [CrossRef] [PubMed]
  27. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008). [CrossRef] [PubMed]
  28. C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, “Comprehensive data analysis of femtosecond transient absorption spectra: A review,” J. Photochem. Photobiol. Photochem. Rev.13(1), 1–27 (2012). [CrossRef]
  29. M. Cotlet, J. Hofkens, S. Habuchi, G. Dirix, M. Van Guyse, J. Michiels, J. Vanderleyden, and F. C. De Schryver, “Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.98(25), 14398–14403 (2001). [CrossRef] [PubMed]
  30. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature461(7267), 1105–1109 (2009). [CrossRef] [PubMed]
  31. J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods2(12), 910–919 (2005). [CrossRef] [PubMed]
  32. J. W. Borst and A. J. W. G. Visser, “Fluorescence lifetime imaging microscopy in life sciences,” Meas. Sci. Technol.21(10), 102002 (2010). [CrossRef]
  33. N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008). [CrossRef] [PubMed]
  34. K. D. Piatkevich, E. N. Efremenko, V. V. Verkhusha, and S. D. Varfolomeev, “Red fluorescent proteins and their properties,” Russ. Chem. Rev.79(3), 243–258 (2010). [CrossRef]
  35. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A26(2), 443–455 (2009). [CrossRef] [PubMed]
  36. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt.49(8), 1219–1233 (2010). [CrossRef] [PubMed]
  37. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited