OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2492–2506

Four-dimensional visualization of subpleural alveolar dynamics in vivo during uninterrupted mechanical ventilation of living swine

Eman Namati, William C. Warger, II, Carolin I. Unglert, Jocelyn E. Eckert, Jeroen Hostens, Brett E. Bouma, and Guillermo J. Tearney  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2492-2506 (2013)
http://dx.doi.org/10.1364/BOE.4.002492


View Full Text Article

Enhanced HTML    Acrobat PDF (2595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pulmonary alveoli have been studied for many years, yet no unifying hypothesis exists for their dynamic mechanics during respiration due to their miniature size (100-300 μm dimater in humans) and constant motion, which prevent standard imaging techniques from visualizing four-dimensional dynamics of individual alveoli in vivo. Here we report a new platform to image the first layer of air-filled subpleural alveoli through the use of a lightweight optical frequency domain imaging (OFDI) probe that can be placed upon the pleura to move with the lung over the complete range of respiratory motion. This device enables in-vivo acquisition of four-dimensional microscopic images of alveolar airspaces (alveoli and ducts), within the same field of view, during continuous ventilation without restricting the motion or modifying the structure of the alveoli. Results from an exploratory study including three live swine suggest that subpleural alveolar air spaces are best fit with a uniform expansion (r2 = 0.98) over a recruitment model (r2 = 0.72). Simultaneously, however, the percentage change in volume shows heterogeneous alveolar expansion within just a 1 mm x 1 mm field of view. These results signify the importance of four-dimensional imaging tools, such as the device presented here. Quantification of the dynamic response of the lung during ventilation may help create more accurate modeling techniques and move toward a more complete understanding of alveolar mechanics.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: July 9, 2013
Revised Manuscript: August 24, 2013
Manuscript Accepted: August 28, 2013
Published: October 15, 2013

Citation
Eman Namati, William C. Warger, Carolin I. Unglert, Jocelyn E. Eckert, Jeroen Hostens, Brett E. Bouma, and Guillermo J. Tearney, "Four-dimensional visualization of subpleural alveolar dynamics in vivo during uninterrupted mechanical ventilation of living swine," Biomed. Opt. Express 4, 2492-2506 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2492


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Roan and C. M. Waters, “What do we know about mechanical strain in lung alveoli?” Am. J. Physiol. Lung Cell. Mol. Physiol.301(5), L625–L635 (2011). [CrossRef] [PubMed]
  2. M. Cereda, K. Emami, S. Kadlecek, Y. Xin, P. Mongkolwisetwara, H. Profka, A. Barulic, S. Pickup, S. Månsson, P. Wollmer, M. Ishii, C. S. Deutschman, and R. R. Rizi, “Quantitative imaging of alveolar recruitment with hyperpolarized gas MRI during mechanical ventilation,” J. Appl. Physiol.110(2), 499–511 (2011). [CrossRef] [PubMed]
  3. A. J. Hajari, D. A. Yablonskiy, A. L. Sukstanskii, J. D. Quirk, M. S. Conradi, and J. C. Woods, “Morphometric changes in the human pulmonary acinus during inflation,” J. Appl. Physiol.112(6), 937–943 (2012). [CrossRef] [PubMed]
  4. D. A. Yablonskiy, A. L. Sukstanskii, J. C. Woods, D. S. Gierada, J. D. Quirk, J. C. Hogg, J. D. Cooper, and M. S. Conradi, “Quantification of lung microstructure with hyperpolarized 3He diffusion MRI,” J. Appl. Physiol.107(4), 1258–1265 (2009). [CrossRef] [PubMed]
  5. J. Bickenbach, R. Dembinski, M. Czaplik, S. Meissner, A. Tabuchi, M. Mertens, L. Knels, W. Schroeder, P. Pelosi, E. Koch, W. M. Kuebler, R. Rossaint, and R. Kuhlen, “Comparison of two in vivo microscopy techniques to visualize alveolar mechanics,” J. Clin. Monit. Comput.23(5), 323–332 (2009). [CrossRef] [PubMed]
  6. D. E. Carney, C. E. Bredenberg, H. J. Schiller, A. L. Picone, U. E. McCann, L. A. Gatto, G. Bailey, M. Fillinger, and G. F. Nieman, “The mechanism of lung volume change during mechanical ventilation,” Am. J. Respir. Crit. Care Med.160(5), 1697–1702 (1999). [CrossRef]
  7. B. D. T. Daly, G. E. Parks, C. H. Edmonds, C. W. Hibbs, and J. C. Norman, “Dynamic alveolar mechanics as studied by videomicroscopy,” Respir. Physiol.24(2), 217–232 (1975). [CrossRef] [PubMed]
  8. J. D. DiRocco, L. A. Pavone, D. E. Carney, C. J. Lutz, L. A. Gatto, S. K. Landas, and G. F. Nieman, “Dynamic alveolar mechanics in four models of lung injury,” Intensive Care Med.32(1), 140–148 (2006). [CrossRef] [PubMed]
  9. M. R. Looney, E. E. Thornton, D. Sen, W. J. Lamm, R. W. Glenny, and M. F. Krummel, “Stabilized imaging of immune surveillance in the mouse lung,” Nat. Methods8(1), 91–96 (2011). [CrossRef] [PubMed]
  10. S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window,” J. Biomed. Opt.15(1), 016030 (2010). [CrossRef] [PubMed]
  11. S. Meissner, A. Tabuchi, M. Mertens, W. M. Kuebler, and E. Koch, “Virtual four-dimensional imaging of lung parenchyma by optical coherence tomography in mice,” J. Biomed. Opt.15(3), 036016 (2010). [CrossRef] [PubMed]
  12. M. Mertens, A. Tabuchi, S. Meissner, A. Krueger, K. Schirrmann, U. Kertzscher, A. R. Pries, A. S. Slutsky, E. Koch, and W. M. Kuebler, “Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse,” Crit. Care Med.37(9), 2604–2611 (2009). [CrossRef] [PubMed]
  13. A. P. Moreci and J. C. Norman, “Measurements of alveolar sac diameters by incident-light photomicrography. effects of positive-pressure respiration,” Ann. Thorac. Surg.15(2), 179–186 (1973). [CrossRef] [PubMed]
  14. G. F. Nieman, C. E. Bredenberg, W. R. Clark, and N. R. West, “Alveolar function following surfactant deactivation,” J. Appl. Physiol.51(4), 895–904 (1981). [PubMed]
  15. H. J. Schiller, U. G. McCann, D. E. Carney, L. A. Gatto, J. M. Steinberg, and G. F. Nieman, “Altered alveolar mechanics in the acutely injured lung,” Crit. Care Med.29(5), 1049–1055 (2001). [CrossRef] [PubMed]
  16. D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011). [CrossRef] [PubMed]
  17. J. Steinberg, H. J. Schiller, J. M. Halter, L. A. Gatto, M. Dasilva, M. Amato, U. G. McCann, and G. F. Nieman, “Tidal volume increases do not affect alveolar mechanics in normal lung but cause alveolar overdistension and exacerbate alveolar instability after surfactant deactivation,” Crit. Care Med.30(12), 2675–2683 (2002). [CrossRef] [PubMed]
  18. J. M. Steinberg, H. J. Schiller, J. M. Halter, L. A. Gatto, H.-M. Lee, L. A. Pavone, and G. F. Nieman, “Alveolar instability causes early ventilator-induced lung injury independent of neutrophils,” Am. J. Respir. Crit. Care Med.169(1), 57–63 (2004). [CrossRef] [PubMed]
  19. W. W. Wagner., “Pulmonary microcirculatory observations in vivo under physiological conditions,” J. Appl. Physiol.26(3), 375–377 (1969). [PubMed]
  20. H. Liu, H. Runck, M. Schneider, X. Tong, and C. A. Stahl, “Morphometry of subpleural alveoli may be greatly biased by local pressure changes induced by the microscopic device,” Respir. Physiol. Neurobiol.178(2), 283–289 (2011). [CrossRef] [PubMed]
  21. Y. Wu and C. E. Perlman, “In situ methods for assessing alveolar mechanics,” J. Appl. Physiol.112(3), 519–526 (2012). [CrossRef] [PubMed]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  23. N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005). [CrossRef] [PubMed]
  24. L. Kirsten, M. Gaertner, C. Schnabel, S. Meissner, and E. Koch, “Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography,” J. Biophotonics6(2), 148–152 (2013). [CrossRef] [PubMed]
  25. C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. K. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012). [CrossRef] [PubMed]
  26. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  27. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007). [CrossRef] [PubMed]
  28. W. S. Rasband and J. Image, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ . 1997–2011.
  29. R. P. Woods, S. R. Cherry, and J. C. Mazziotta, “Rapid automated algorithm for aligning and reslicing PET images,” J. Comput. Assist. Tomogr.16(4), 620–633 (1992). [CrossRef] [PubMed]
  30. E. Namati, J. De Ryk, J. Thiesse, Z. Towfic, E. Hoffman, and G. Mclennan, “Large image microscope array for the compilation of multimodality whole organ image databases,” Anat. Rec. (Hoboken)290(11), 1377–1387 (2007). [CrossRef] [PubMed]
  31. J. Gil, H. Bachofen, P. Gehr, and E. R. Weibel, “Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion,” J. Appl. Physiol.47(5), 990–1001 (1979). [PubMed]
  32. C. I. Unglert, W. C. Warger, J. Hostens, E. Namati, R. Birngruber, B. E. Bouma, and G. J. Tearney, “Validation of two-dimensional and three-dimensional measurements of subpleural alveolar size parameters by optical coherence tomography,” J. Biomed. Opt.17(12), 126015 (2012). [CrossRef] [PubMed]
  33. J. G. Venegas, R. S. Harris, and B. A. Simon, “A comprehensive equation for the pulmonary pressure-volume curve,” J. Appl. Physiol.84(1), 389–395 (1998). [PubMed]
  34. H. Rahn, A. B. Otis, L. E. Chadwick, and W. O. Fenn, “The pressure-volume diagram of the thorax and lung,” Am. J. Physiol.146(2), 161–178 (1946). [PubMed]
  35. R. R. Mercer, J. M. Laco, and J. D. Crapo, “Three-dimensional reconstruction of alveoli in the rat lung for pressure-volume relationships,” J. Appl. Physiol.62(4), 1480–1487 (1987). [PubMed]
  36. E. D’Angelo, “Local alveolar size and transpulmonary pressure in situ and in isolated lungs,” Respir. Physiol.14(3), 251–266 (1972). [CrossRef] [PubMed]
  37. J. Gil and E. R. Weibel, “Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion,” Respir. Physiol.15(2), 190–213 (1972). [CrossRef] [PubMed]
  38. C. A. Stahl, K. Möller, S. Schumann, R. Kuhlen, M. Sydow, C. Putensen, and J. Guttmann, “Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome,” Crit. Care Med.34(8), 2090–2098 (2006). [CrossRef] [PubMed]
  39. R. S. Harris, “Pressure-volume curves of the respiratory system,” Respir. Care50(1), 78–98, discussion 98–99 (2005). [PubMed]
  40. R. A. McLaughlin, X. Yang, B. C. Quirk, D. Lorenser, R. W. Kirk, P. B. Noble, and D. D. Sampson, “Static and dynamic imaging of alveoli using optical coherence tomography needle probes,” J. Appl. Physiol.113(6), 967–974 (2012). [CrossRef] [PubMed]
  41. S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009). [CrossRef] [PubMed]
  42. A. Assimacopoulos, R. Guggenheim, and Y. Kapanci, “Changes in alveolar capillary configuration at different levels of lung inflation in the rat. An ultrastructural and morphometric study,” Lab. Invest.34(1), 10–22 (1976). [PubMed]
  43. H. Bachofen, S. Schürch, M. Urbinelli, and E. R. Weibel, “Relations among alveolar surface tension, surface area, volume, and recoil pressure,” J. Appl. Physiol.62(5), 1878–1887 (1987). [PubMed]
  44. J. Bastacky, C. Y. C. Lee, J. Goerke, H. Koushafar, D. Yager, L. Kenaga, T. P. Speed, Y. Chen, and J. A. Clements, “Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung,” J. Appl. Physiol.79(5), 1615–1628 (1995). [PubMed]
  45. E. H. Oldmixon and F. G. Hoppin., “Alveolar septal folding and lung inflation history,” J. Appl. Physiol.71(6), 2369–2379 (1991). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1731 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited