OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2527–2539

In vivo imaging of retinal pigment epithelium cells in age related macular degeneration

Ethan A. Rossi, Piero Rangel-Fonseca, Keith Parkins, William Fischer, Lisa R. Latchney, Margaret A. Folwell, David R. Williams, Alfredo Dubra, and Mina M. Chung  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2527-2539 (2013)
http://dx.doi.org/10.1364/BOE.4.002527


View Full Text Article

Enhanced HTML    Acrobat PDF (5893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Morgan and colleagues demonstrated that the RPE cell mosaic can be resolved in the living human eye non-invasively by imaging the short-wavelength autofluorescence using an adaptive optics (AO) ophthalmoscope. This method, based on the assumption that all subjects have the same longitudinal chromatic aberration (LCA) correction, has proved difficult to use in diseased eyes, and in particular those affected by age-related macular degeneration (AMD). In this work, we improve Morgan’s method by accounting for chromatic aberration variations by optimizing the confocal aperture axial and transverse placement through an automated iterative maximization of image intensity. The increase in image intensity after algorithmic aperture placement varied depending upon patient and aperture position prior to optimization but increases as large as a factor of 10 were observed. When using a confocal aperture of 3.4 Airy disks in diameter, images were obtained using retinal radiant exposures of less than 2.44 J/cm2, which is ~22 times below the current ANSI maximum permissible exposure. RPE cell morphologies that were strikingly similar to those seen in postmortem histological studies were observed in AMD eyes, even in areas where the pattern of fluorescence appeared normal in commercial fundus autofluorescence (FAF) images. This new method can be used to study RPE morphology in AMD and other diseases, providing a powerful tool for understanding disease pathogenesis and progression, and offering a new means to assess the efficacy of treatments designed to restore RPE health.

© 2013 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 12, 2013
Published: October 18, 2013

Citation
Ethan A. Rossi, Piero Rangel-Fonseca, Keith Parkins, William Fischer, Lisa R. Latchney, Margaret A. Folwell, David R. Williams, Alfredo Dubra, and Mina M. Chung, "In vivo imaging of retinal pigment epithelium cells in age related macular degeneration," Biomed. Opt. Express 4, 2527-2539 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2527


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Blair, “Geographic atrophy of the retinal pigment epithelium. A manifestation of senile macular degeneration,” Arch. Ophthalmol. 93(1), 19–25 (1975). [CrossRef] [PubMed]
  2. J. D. Gass, “Drusen and disciform macular detachment and degeneration,” Trans. Am. Ophthalmol. Soc. 70, 409–436 (1972). [PubMed]
  3. W. R. Green, P. J. McDonnell, J. H. Yeo, “Pathologic features of senile macular degeneration,” Ophthalmology 92(5), 615–627 (1985). [PubMed]
  4. H. Kaneko, S. Dridi, V. Tarallo, B. D. Gelfand, B. J. Fowler, W. G. Cho, M. E. Kleinman, S. L. Ponicsan, W. W. Hauswirth, V. A. Chiodo, K. Karikó, J. W. Yoo, D. K. Lee, M. Hadziahmetovic, Y. Song, S. Misra, G. Chaudhuri, F. W. Buaas, R. E. Braun, D. R. Hinton, Q. Zhang, H. E. Grossniklaus, J. M. Provis, M. C. Madigan, A. H. Milam, N. L. Justice, R. J. C. Albuquerque, A. D. Blandford, S. Bogdanovich, Y. Hirano, J. Witta, E. Fuchs, D. R. Littman, B. K. Ambati, C. M. Rudin, M. M. W. Chong, P. Provost, J. F. Kugel, J. A. Goodrich, J. L. Dunaief, J. Z. Baffi, J. Ambati, “DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration,” Nature 471(7338), 325–330 (2011). [CrossRef] [PubMed]
  5. M. Rudolf, S. D. Vogt, C. A. Curcio, C. Huisingh, G. McGwin, A. Wagner, S. Grisanti, R. W. Read, “Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy,” Ophthalmology 120(4), 821–828 (2013). [CrossRef] [PubMed]
  6. R. Adler, C. Curcio, D. Hicks, D. Price, F. Wong, “Cell death in age-related macular degeneration,” Mol. Vis. 5, 31 (1999). [PubMed]
  7. F. C. Delori, M. R. Fleckner, D. G. Goger, J. J. Weiter, C. K. Dorey, “Autofluorescence distribution associated with drusen in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 41(2), 496–504 (2000). [PubMed]
  8. A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995). [CrossRef] [PubMed]
  9. A. von Rückmann, F. W. Fitzke, A. C. Bird, “In vivo fundus autofluorescence in macular dystrophies,” Arch. Ophthalmol. 115(5), 609–615 (1997). [CrossRef] [PubMed]
  10. A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997). [PubMed]
  11. A. von Rückmann, F. W. Fitzke, J. Fan, A. Halfyard, A. C. Bird, “Abnormalities of fundus autofluorescence in central serous retinopathy,” Am. J. Ophthalmol. 133(6), 780–786 (2002). [CrossRef] [PubMed]
  12. F. G. Holz, A. Bindewald-Wittich, M. Fleckenstein, J. Dreyhaupt, H. P. N. Scholl, S. Schmitz-ValckenbergFAM-Study Group, “Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration,” Am. J. Ophthalmol. 143(3), 463–472, 472.e2 (2007). [CrossRef] [PubMed]
  13. J. C. Hwang, J. W. K. Chan, S. Chang, R. T. Smith, “Predictive value of fundus autofluorescence for development of geographic atrophy in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 47(6), 2655–2661 (2006). [CrossRef] [PubMed]
  14. R. G. Sayegh, C. Simader, U. Scheschy, A. Montuoro, C. Kiss, S. Sacu, D. P. Kreil, C. Prünte, U. Schmidt-Erfurth, “A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy,” Ophthalmology 118(9), 1844–1851 (2011). [CrossRef] [PubMed]
  15. F. Delori, J. P. Greenberg, R. L. Woods, J. Fischer, T. Duncker, J. Sparrow, R. T. Smith, “Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 52(13), 9379–9390 (2011). [CrossRef] [PubMed]
  16. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  17. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008). [CrossRef] [PubMed]
  18. E. A. Rossi, M. M. Chung, A. Dubra, H. Song, and D. R. Williams, “Tracking disease progression in geographic atrophy with adaptive optics imaging,” presented at Engineering the Eye III, Benasque, Spain, 10 June 2011.
  19. E. A. Rossi, D. R. Williams, A. Dubra, H. Song, M. A. Folwell, L. R. Latchney, M. M. Chung, “Photoreceptor and RPE Disruptions Observed Outside Clinically Visible Geographic Atrophy Lesions in the Living Eye with Fluorescence Adaptive Optics Scanning Laser Ophthalmoscopy (FAOSLO),” Invest. Ophthalmol. Vis. Sci. 53, E–Abstract 5599 (2012).
  20. A. Dubra, Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  21. D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10(4), 433–436 (1997). [CrossRef] [PubMed]
  22. M. Kleiner, D. Brainard, D. G. Pelli, “What’s new in Psychtoolbox-3?” Perception36, (2007).
  23. D. G. Pelli, “The VideoToolbox software for visual psychophysics: Transforming numbers into movies,” Spat. Vis. 10(4), 437–442 (1997). [CrossRef] [PubMed]
  24. American National Standards Institute, American National Standard for Safe Use of Lasers (ANSI Z136.1–2007).
  25. E. A. Rossi and J. J. Hunter, Rochester Exposure Limit Calculator [Computer software] (University of Rochester, 2013). http://aria.cvs.rochester.edu/software/RELcalculator.html
  26. J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008). [CrossRef] [PubMed]
  27. J. I. W. Morgan, J. J. Hunter, W. H. Merigan, D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009). [CrossRef] [PubMed]
  28. F. C. Delori, R. H. Webb, D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007). [CrossRef]
  29. M. F. Marmor and T. J. Wolfensberger, eds., The Retinal Pigment Epithelium: Function and Disease (Oxford University Press, 1998).
  30. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005). [CrossRef] [PubMed]
  31. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  32. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995). [PubMed]
  33. J. I. W. Morgan, “In vivo imaging of the retinal pigment epithelial cells,” (University of Rochester, 2008).
  34. K. Grieve, P. Tiruveedhula, Y. Zhang, A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006). [CrossRef] [PubMed]
  35. J. A. Nelder, R. Mead, “A Simplex Method for Function Minimization,” Comput. J. 7(4), 308–313 (1965). [CrossRef]
  36. J. Borggaard, NELDER_MEAD[Computer software] (2009). http://people.sc.fsu.edu/~jburkardt/m_src/nelder_mead/nelder_mead.html
  37. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, B. Fischer, B. M. Dawant, and C. Lorenz, eds., Lecture Notes in Computer Science No. 6204 (Springer Berlin Heidelberg, 2010), pp. 60–71.
  38. P. Rangel-Fonseca, A. Gomez-Vieyra, D. Malacara-Hernández, M. C. Wilson-Herran, M. M. Chung, D. R. Williams, and E. A. Rossi, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 are preparing a manuscript to be called “Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.”
  39. D. H. Sliney, J. J. Hunter, F. C. Delori, D. R. Williams, J. Mellerio, “Competing Photochemical Retinal Damage Mechanisms From Visible Light: Implications for Human Retinal Exposure Limits,” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 3456 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited