OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2555–2569

Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography

Wenfeng Xia, Daniele Piras, Mithun K. A. Singh, Johan C. G. van Hespen, Ton G. van Leeuwen, Wiendelt Steenbergen, and Srirang Manohar  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2555-2569 (2013)
http://dx.doi.org/10.1364/BOE.4.002555


View Full Text Article

Enhanced HTML    Acrobat PDF (7199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoacoustic imaging can visualize vascularization-driven optical absorption contrast with great potential for breast cancer detection and diagnosis. State-of-the-art photoacoustic breast imaging systems are promising but are limited either by only a 2D imaging capability or by an insufficient imaging field-of-view (FOV). We present a laboratory prototype system designed for 3D photoacoustic full breast tomography, and comprehensively characterize it and evaluate its performance in imaging phantoms. The heart of the system is an ultrasound detector array specifically developed for breast imaging and optimized for high sensitivity. Each detector element has an acoustic lens to enlarge the acceptance angle of the large surface area detector elements to ensure a wide system FOV. We characterized the ultrasound detector array performance in terms of frequency response, directional sensitivity, minimum detectable pressure and inter-element electrical and mechanical cross-talk. Further we evaluated the system performance of the laboratory prototype imager using well-defined breast mimicking phantoms. The system possesses a 2 mm XY plane resolution and a 6 mm vertical resolution. A vasculature mimicking object was successfully visualized down to a depth of 40 mm in the breast phantom. Further, tumor mimicking spherical objects with 5 and 10 mm diameter at 20 mm and 40 mm depths are recovered, indicating high system sensitivity. The system has a 170 × 170 × 170 mm3 FOV, which is well suited for full breast imaging. Various recommendations are provided for performance improvement and to guide this laboratory prototype to a clinical version in future.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(110.5120) Imaging systems : Photoacoustic imaging
(170.3830) Medical optics and biotechnology : Mammography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: July 25, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: September 13, 2013
Published: October 23, 2013

Citation
Wenfeng Xia, Daniele Piras, Mithun K. A. Singh, Johan C. G. van Hespen, Ton G. van Leeuwen, Wiendelt Steenbergen, and Srirang Manohar, "Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography," Biomed. Opt. Express 4, 2555-2569 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin.61(2), 69–90 (2011). [CrossRef] [PubMed]
  2. D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, and P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology36, 237–248 (2012). [CrossRef] [PubMed]
  3. D. B. Kopans, Breast Imaging (Wolters Kluwer Health, 2007)
  4. B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451, (2008) [CrossRef] [PubMed]
  5. C. Lutzweiler and D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors13(6), 7345–7384, (2013) [CrossRef] [PubMed]
  6. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs”, Science335, (2012). (doi:) [CrossRef]
  7. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1, 602–631, (2011) [CrossRef]
  8. D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron.16, 730–739, (2010) [CrossRef]
  9. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37, 6096–6100, (2010) [CrossRef] [PubMed]
  10. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009) [CrossRef] [PubMed]
  11. Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, and L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt.17(6), 061208 (2012) [CrossRef] [PubMed]
  12. F. Ye, S. Yang, and D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett.97, 213702 (2010) doi: [CrossRef]
  13. M. Pramanik, G. Ku, C. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys.35, 2218–2223 (2008) [CrossRef] [PubMed]
  14. M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582). [PubMed]
  15. L. Xi, X. Li, L. Yao, S. Grobmyer, and H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys.39, 2584–2594, (2012) [CrossRef] [PubMed]
  16. V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr.50, 1383–1390 (2003). [CrossRef]
  17. A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, and H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE4256, 6–15 (2001). [CrossRef]
  18. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology216, 279–283 (2000). [PubMed]
  19. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt.9, 1172–1181 (2004). [CrossRef] [PubMed]
  20. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express15, 12277–12285 (2007). [CrossRef] [PubMed]
  21. W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys.40(3), 032901 (2013). [CrossRef] [PubMed]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia2, 26–40 (2000). [CrossRef] [PubMed]
  23. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt.14, 054030 (1999). [CrossRef]
  24. W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)
  25. J. Callerama, R. H. Tancrell, and D. T. Wilson, “Transmitters and receivers for medical ultrasonics” Ultrasonic Symposium Proceedings, IEEE CH1482-9/79/0000-0407, 407–411, (1979)
  26. H. J. Van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid–10% in the wavelength range of 400–1100 nm,” Appl. Opt.30, 4507–4514, (1991). [CrossRef] [PubMed]
  27. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002, (2011). [CrossRef] [PubMed]
  28. J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water”, J. Acoust. Soc. Am.41(5), (1951), 302–304
  29. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express15(2), 486–500, (2007). [CrossRef] [PubMed]
  30. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt.9(6), 1137–1142, (2004). [CrossRef] [PubMed]
  31. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36–46, (1999). [CrossRef] [PubMed]
  32. B.T. Cox and P.C. Beard, “Fast calculation of pulsed photoacoustic field in fluids using k-space metholds,” J. Acoust. Soc. Am.117(6), 3616–3627, (2005) [CrossRef] [PubMed]
  33. B. E. Treeby and B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt.51(2), 021314, (2010) [CrossRef]
  34. B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems26, 115003, (2010) [CrossRef]
  35. J. Folkman, “Tumor angiogenesis,” in Cancer Medicine, J. F. Holland, Ed., 5th ed. (Hamilton, ON: B. C. Decker, 2000), ch. 9, pp. 132152.
  36. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer.3, 401–410 (2003). (doi:) [CrossRef] [PubMed]
  37. S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, and M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys.38(4), 2180–2190 (2011). [CrossRef] [PubMed]
  38. ANSI, Z136.1-2007.
  39. S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, and A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE8581, 85810N, (2013). [CrossRef]
  40. J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express19(3) 2093–2104 (2011). [CrossRef] [PubMed]
  41. C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol.351615–1628 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (461 KB)     
» Media 2: MOV (481 KB)     
» Media 3: MOV (463 KB)     
» Media 4: MOV (420 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited