OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2570–2584

Quantitative comparison of analysis methods for spectroscopic optical coherence tomography

Nienke Bosschaart, Ton G. van Leeuwen, Maurice C. G. Aalders, and Dirk J. Faber  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 11, pp. 2570-2584 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3064 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectroscopic optical coherence tomography (sOCT) enables the mapping of chromophore concentrations and image contrast enhancement in tissue. Acquisition of depth resolved spectra by sOCT requires analysis methods with optimal spectral/spatial resolution and spectral recovery. In this article, we quantitatively compare the available methods, i.e. the short time Fourier transform (STFT), wavelet transforms, the Wigner-Ville distribution and the dual window method through simulations in tissue-like media. We conclude that all methods suffer from the trade-off in spectral/spatial resolution, and that the STFT is the optimal method for the specific application of the localized quantification of hemoglobin concentration and oxygen saturation.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(070.4790) Fourier optics and signal processing : Spectrum analysis
(160.4760) Materials : Optical properties
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Optical Coherence Tomography

Original Manuscript: August 12, 2013
Revised Manuscript: September 28, 2013
Manuscript Accepted: October 15, 2013
Published: October 23, 2013

Nienke Bosschaart, Ton G. van Leeuwen, Maurice C. G. Aalders, and Dirk J. Faber, "Quantitative comparison of analysis methods for spectroscopic optical coherence tomography," Biomed. Opt. Express 4, 2570-2584 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bosschaart, T. G. van Leeuwen, M. C. G. Aalders, B. Hermann, W. Drexler, and D. J. Faber, “Spectroscopic low coherence interferometry”, Chapter 23 in Optical Coherence Tomography – Technology and Applications, W. Drexler and J.G. Fujimoto, eds. (Springer Berlin Heidelberg New York USA), 2nd edition (2013)
  2. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A15(9), 2288–2296 (1998). [CrossRef]
  3. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000). [CrossRef] [PubMed]
  4. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett.29(14), 1647–1649 (2004). [CrossRef] [PubMed]
  5. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011). [CrossRef] [PubMed]
  6. N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009). [CrossRef] [PubMed]
  7. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011). [CrossRef] [PubMed]
  8. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011). [CrossRef] [PubMed]
  9. J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett.37(21), 4443–4445 (2012). [CrossRef] [PubMed]
  10. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express4(8), 1269–1284 (2013). [CrossRef] [PubMed]
  11. R. N. Graf and A. Wax, “Temporal coherence and time-frequency distributions in spectroscopic optical coherence tomography,” J. Opt. Soc. Am. A24(8), 2186–2195 (2007). [CrossRef] [PubMed]
  12. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  13. C. Xu, F. Kamalabadi, and S. A. Boppart, “Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography,” Appl. Opt.44(10), 1813–1822 (2005). [CrossRef] [PubMed]
  14. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000). [CrossRef] [PubMed]
  15. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  16. L. Cohen, “Time-frequency distributions – a review,” Proc. IEEE77(7), 941–981 (1989). [CrossRef]
  17. Data tabulated from various sources compiled by S. Prahl, http://omlc.ogi.edu/spectra .
  18. N. Bosschaart, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “Spectral domain detection in low-coherence spectroscopy,” Biomed. Opt. Express3(9), 2263–2272 (2012). [CrossRef] [PubMed]
  19. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett.35(12), 2094–2096 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (666 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited