OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2596–2608

Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes

Zach Nadler, Bo Wang, Gadi Wollstein, Jessica E. Nevins, Hiroshi Ishikawa, Larry Kagemann, Ian A. Sigal, R. Daniel Ferguson, Daniel X. Hammer, Ireneusz Grulkowski, Jonathan J. Liu, Martin F. Kraus, Chen D. Lu, Joachim Hornegger, James G. Fujimoto, and Joel S. Schuman  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2596-2608 (2013)
http://dx.doi.org/10.1364/BOE.4.002596


View Full Text Article

Enhanced HTML    Acrobat PDF (5004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an automated segmentation method for in-vivo 3D optical coherence tomography (OCT) imaging of the lamina cribrosa (LC). Manual segmentations of coronal slices of the LC were used as a gold standard in parameter selection and evaluation of the automated technique. The method was validated using two prototype OCT devices; each had a subject cohort including both healthy and glaucomatous eyes. Automated segmentation of in-vivo 3D LC OCT microstructure performed comparably to manual segmentation and is useful for investigative research and in clinical quantification of the LC.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Image Processing

History
Original Manuscript: July 25, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 17, 2013
Published: October 24, 2013

Citation
Zach Nadler, Bo Wang, Gadi Wollstein, Jessica E. Nevins, Hiroshi Ishikawa, Larry Kagemann, Ian A. Sigal, R. Daniel Ferguson, Daniel X. Hammer, Ireneusz Grulkowski, Jonathan J. Liu, Martin F. Kraus, Chen D. Lu, Joachim Hornegger, James G. Fujimoto, and Joel S. Schuman, "Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes," Biomed. Opt. Express 4, 2596-2608 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol.90(3), 262–267 (2006). [CrossRef] [PubMed]
  2. K. A. Townsend, G. Wollstein, and J. S. Schuman, “Imaging of the retinal nerve fibre layer for glaucoma,” Br. J. Ophthalmol.93(2), 139–143 (2009). [CrossRef] [PubMed]
  3. G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol.123(4), 464–470 (2005). [CrossRef] [PubMed]
  4. C. K. Leung, N. Choi, R. N. Weinreb, S. Liu, C. Ye, L. Liu, G. W. Lai, J. Lau, and D. S. Lam, “Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma,” Ophthalmology117(12), 2337–2344 (2010). [CrossRef] [PubMed]
  5. O. Tan, G. Li, A. T. Lu, R. Varma, D. Huang, and Advanced Imaging for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology115(6), 949–956 (2008). [CrossRef] [PubMed]
  6. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, et al. “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116, 2305–2314 e2301–2302 (2009). [CrossRef]
  7. G. Wollstein, H. Ishikawa, J. Wang, S. A. Beaton, and J. S. Schuman, “Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage,” Am. J. Ophthalmol.139(1), 39–43 (2005). [CrossRef] [PubMed]
  8. F. A. Medeiros, L. M. Zangwill, C. Bowd, R. M. Vessani, R. Susanna, and R. N. Weinreb, “Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography,” Am. J. Ophthalmol.139(1), 44–55 (2005). [CrossRef] [PubMed]
  9. L. Kagemann, H. Ishikawa, G. Wollstein, P. M. Brennen, K. A. Townsend, M. L. Gabriele, and J. S. Schuman, “Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa,” Ophthalmic Surg. Lasers Imaging39(4Suppl), S126–S131 (2008). [PubMed]
  10. E. J. Lee, T. W. Kim, R. N. Weinreb, M. H. Suh, M. Kang, K. H. Park, S. H. Kim, and D. M. Kim, “Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma,” Invest. Ophthalmol. Vis. Sci.53(1), 198–204 (2012). [CrossRef] [PubMed]
  11. R. Inoue, M. Hangai, Y. Kotera, H. Nakanishi, S. Mori, S. Morishita, and N. Yoshimura, “Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma,” Ophthalmology116(2), 214–222 (2009). [CrossRef] [PubMed]
  12. H. A. Quigley, E. M. Addicks, W. R. Green, and A. E. Maumenee, “Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage,” Arch. Ophthalmol.99(4), 635–649 (1981). [CrossRef] [PubMed]
  13. C. F. Burgoyne, J. C. Downs, A. J. Bellezza, J. K. Suh, and R. T. Hart, “The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage,” Prog. Retin. Eye Res.24(1), 39–73 (2005). [CrossRef] [PubMed]
  14. J. C. Downs, M. D. Roberts, C. F. Burgoyne, and R. T. Hart, “Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye,” in Proceedings of IEEE Conference in Medicine and Biology (2009), 4277–4280. [CrossRef]
  15. E. J. Lee, T. W. Kim, R. N. Weinreb, K. H. Park, S. H. Kim, and D. M. Kim, “Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(1), 87–95, e1 (2011). [CrossRef] [PubMed]
  16. S. Kiumehr, S. C. Park, D. Syril, C. C. Teng, C. Tello, J. M. Liebmann, and R. Ritch, “In vivo evaluation of focal lamina cribrosa defects in glaucoma,” Arch. Ophthalmol.130(5), 552–559 (2012). [CrossRef] [PubMed]
  17. H. Y. Park and C. K. Park, “Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma,” Ophthalmology120(4), 745–752 (2013). [CrossRef] [PubMed]
  18. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express17(5), 4084–4094 (2009). [CrossRef] [PubMed]
  20. G. Tezel, K. Trinkaus, and M. B. Wax, “Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes,” Br. J. Ophthalmol.88(2), 251–256 (2004). [CrossRef] [PubMed]
  21. L. Fontana, A. Bhandari, F. W. Fitzke, and R. A. Hitchings, “In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma,” Curr. Eye Res.17(4), 363–369 (1998). [CrossRef] [PubMed]
  22. T. Akagi, M. Hangai, K. Takayama, A. Nonaka, S. Ooto, and N. Yoshimura, “In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci.53(7), 4111–4119 (2012). [CrossRef] [PubMed]
  23. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011). [CrossRef] [PubMed]
  24. A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007). [CrossRef] [PubMed]
  25. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  26. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A29(12), 2598–2607 (2012). [CrossRef] [PubMed]
  27. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012). [CrossRef] [PubMed]
  28. W. Niblack, An Introduction to Digital Image Processing (Strandberg Publishing Company, Plenum, NY 1985).
  29. A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Longair, P. Tomancak, V. Hartenstein, and R. J. Douglas, “TrakEM2 software for neural circuit reconstruction,” PLoS ONE7(6), e38011 (2012). [CrossRef] [PubMed]
  30. M. Doube, M. M. Kłosowski, I. Arganda-Carreras, F. P. Cordelières, R. P. Dougherty, J. S. Jackson, B. Schmid, J. R. Hutchinson, and S. J. Shefelbine, “BoneJ: Free and extensible bone image analysis in ImageJ,” Bone47(6), 1076–1079 (2010). [CrossRef] [PubMed]
  31. Bilonick RA, “merror: Accuracy and Precision of Measurements,” R package version 2.0.1 ed (2012).
  32. R. C. Team, (2012) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  33. S. Boker, M. Neale, H. Maes, M. Wilde, M. Spiegel, T. Brick, J. Spies, R. Estabrook, S. Kenny, T. Bates, P. Mehta, and J. Fox, “OpenMx: An Open Source Extended Structural Equation Modeling Framework,” Psychometrika76(2), 306–317 (2011). [CrossRef] [PubMed]
  34. G. Dunn, Statistical evaluation of measurement errors: design and analysis of reliability studies, (Oxford University Press, London 2004).
  35. K. Zuiderveld, (1994) Contrast limited adaptive histogram equalization. In: Paul SH, editor. Graphics gems IV: Academic Press Professional, Inc. pp. 474–485.
  36. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited