OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2683–2695

Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus

Katarzyna Komar, Patrycjusz Stremplewski, Marta Motoczyńska, Maciej Szkulmowski, and Maciej Wojtkowski  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2683-2695 (2013)
http://dx.doi.org/10.1364/BOE.4.002683


View Full Text Article

Enhanced HTML    Acrobat PDF (1620 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a multimodal device for imaging fundus of human eye in vivo which combines functionality of autofluorescence by confocal SLO with Fourier domain OCT. Native fluorescence of human fundus was excited by modulated laser beam (λ = 473 nm, 20 MHz) and lock-in detection was applied resulting in improving sensitivity. The setup allows for acquisition of high resolution OCT and high contrast AF images using fluorescence excitation power of 50-65 μW without averaging consecutive images. Successful functioning of constructed device have been demonstrated for 8 healthy volunteers of different age ranging from 24 to 83 years old.

© 2013 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.5755) Medical optics and biotechnology : Retina scanning

ToC Category:
Ophthalmology Applications

History
Original Manuscript: July 18, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 3, 2013
Published: October 29, 2013

Citation
Katarzyna Komar, Patrycjusz Stremplewski, Marta Motoczyńska, Maciej Szkulmowski, and Maciej Wojtkowski, "Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus," Biomed. Opt. Express 4, 2683-2695 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal Scanning Laser Ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987). [CrossRef] [PubMed]
  2. A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995). [CrossRef] [PubMed]
  3. A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997). [PubMed]
  4. C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003). [CrossRef] [PubMed]
  5. S. Schmitz-Valckenberg and F. Fitzke, “Imaging Techniques of Fundus Autofluorescence,” in Fundus autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  6. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010). [CrossRef] [PubMed]
  7. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012). [CrossRef] [PubMed]
  8. F. C. Delori, “Spectrophotometer for Noninvasive Measurement of Intrinsic Fluorescence and Reflectance of the Ocular Fundus,” Appl. Opt. 33(31), 7439–7452 (1994). [CrossRef] [PubMed]
  9. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995). [PubMed]
  10. S. S. Seehafer and D. A. Pearce, “Lipofuscin: The “Wear and Tear” Pigment,” in Fundus Autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  11. N. Lois and J. V. Forrester, eds., Fundus Autofluorescence (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  12. O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005). [CrossRef] [PubMed]
  13. M. Boulton, “Lipofuscin of the Retinal Pigment Epithelium,” in Fundus Autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  14. J. R. Sparrow, M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005). [CrossRef] [PubMed]
  15. G. E. Eldred, M. R. Lasky, “Retinal Age Pigments Generated by Self-Assembling Lysosomotropic Detergents,” Nature 361(6414), 724–726 (1993). [CrossRef] [PubMed]
  16. M. Rózanowska, T. Sarna, “Light-induced damage to the retina: Role of rhodopsin chromophore revisited,” Photochem. Photobiol. 81(6), 1305–1330 (2005). [CrossRef] [PubMed]
  17. N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003). [CrossRef] [PubMed]
  18. D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001). [CrossRef]
  19. D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004). [CrossRef] [PubMed]
  20. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007). [CrossRef] [PubMed]
  21. D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012). [CrossRef] [PubMed]
  22. Blue Laser Autofluorescence: the new experience” (a webpage of Heidelberg Engineering, 2013), retrieved http://bluepeakexperience.com/us .
  23. E. O. Potma, C. L. Evans, X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006). [CrossRef] [PubMed]
  24. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  25. B. E. Applegate, J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14(20), 9142–9155 (2006). [CrossRef] [PubMed]
  26. M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012). [CrossRef] [PubMed]
  27. C. B. Ma, E. Van Keuren, “A simple three dimensional wide-angle beam propagation method,” Opt. Express 14(11), 4668–4674 (2006). [CrossRef] [PubMed]
  28. F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001). [PubMed]
  29. A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005). [CrossRef] [PubMed]
  30. A. Dubra, D. H. Scoles, and Y. N. Sulai, “In vivo Imaging of the Human Retinal Pigment Epithelium Cell Mosaic using Short-wavelength Autofluorescence and achromatizing lenses., ” in ARVO Annual Meeting, (Seattle, WA, USA, 2013).
  31. D. H. Scoles, Y. N. Sulai, and A. Dubra, “In vivo Imaging of the retinal pigment epithelium using dark-field SLO,” in ARVO-ISIE Imaging Conference, 2013)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited