OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2769–2780

Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens

Shang Wang, Salavat Aglyamov, Andrei Karpiouk, Jiasong Li, Stanislav Emelianov, Fabrice Manns, and Kirill V. Larin  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2769-2780 (2013)
http://dx.doi.org/10.1364/BOE.4.002769


View Full Text Article

Enhanced HTML    Acrobat PDF (3046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the feasibility of using the dominant frequency of the sample surface response to a mechanical stimulation as an effective indicator for sensing the depthwise distribution of elastic properties in transparent layered phantom samples simulating the cortex and nucleus of the crystalline lens. Focused ultrasound waves are used to noninvasively interrogate the sample surface. A phase-sensitive optical coherence tomography system is utilized to capture the surface dynamics over time with nanometer scale sensitivity. Spectral analysis is performed on the sample surface response to ultrasound stimulation and the dominant frequency is calculated under particular loading parameters. Pilot experiments were conducted on homogeneous and layered tissue-mimicking phantoms. Results indicate that the mechanical layers located at different depths introduce different frequencies to the sample surface response, which are correlated with the depth-dependent elasticity of the sample. The duration and the frequency of the ultrasound excitation are also investigated for their influences on this spectrum-based detection. This noninvasive method may be potentially applied for localized and rapid assessment of the depth dependence of the mechanical properties of the crystalline lens.

© 2013 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.7170) Medical optics and biotechnology : Ultrasound

ToC Category:
Ophthalmology Applications

History
Original Manuscript: September 17, 2013
Revised Manuscript: November 5, 2013
Manuscript Accepted: November 6, 2013
Published: November 8, 2013

Citation
Shang Wang, Salavat Aglyamov, Andrei Karpiouk, Jiasong Li, Stanislav Emelianov, Fabrice Manns, and Kirill V. Larin, "Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens," Biomed. Opt. Express 4, 2769-2780 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2769


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt.15(4), 255–272 (1995). [CrossRef] [PubMed]
  2. H. A. Weeber and R. G. van der Heijde, “On the relationship between lens stiffness and accommodative amplitude,” Exp. Eye Res.85(5), 602–607 (2007). [CrossRef] [PubMed]
  3. H. A. Weeber, G. Eckert, W. Pechhold, and R. G. Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol.245(9), 1357–1366 (2007). [CrossRef] [PubMed]
  4. K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis.10, 956–963 (2004). [PubMed]
  5. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991). [PubMed]
  6. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998). [CrossRef] [PubMed]
  7. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004). [CrossRef] [PubMed]
  8. S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol.57(15), 4871–4884 (2012). [CrossRef] [PubMed]
  9. S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol.39(6), 1120–1127 (2013). [CrossRef] [PubMed]
  10. K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res.85(6), 890–893 (2007). [CrossRef] [PubMed]
  11. S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, and R. Sooryakumar, “Light-scattering study of the normal human eye lens: elastic properties and age dependence,” IEEE Trans. Biomed. Eng.57(12), 2910–2917 (2010). [CrossRef] [PubMed]
  12. S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express2(8), 2144–2159 (2011). [CrossRef] [PubMed]
  13. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J.101(6), 1539–1545 (2011). [CrossRef] [PubMed]
  14. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express20(8), 9197–9202 (2012). [CrossRef] [PubMed]
  15. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011). [CrossRef] [PubMed]
  16. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012). [CrossRef] [PubMed]
  17. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  18. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011). [CrossRef] [PubMed]
  19. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007). [CrossRef]
  20. R. Manapuram, S. Aglyamov, F. M. Menodiado, M. Mashiatulla, S. Wang, S. A. Baranov, J. Li, S. Emelianov, and K. V. Larin, “Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT,” Laser Phys.22(9), 1439–1444 (2012). [CrossRef]
  21. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt.17(10), 100501 (2012). [CrossRef] [PubMed]
  22. R. K. Manapuram, S. A. Baranov, V. G. R. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. V. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett.8(2), 164–168 (2011). [CrossRef]
  23. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010). [CrossRef] [PubMed]
  24. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett.37(24), 5184–5186 (2012). [CrossRef] [PubMed]
  25. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett.37(10), 1625–1627 (2012). [CrossRef] [PubMed]
  26. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012). [CrossRef] [PubMed]
  27. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009). [CrossRef] [PubMed]
  28. X. Liang and S. A. Boppart, “Biomechanical properties of In vivo human skin from dynamic optical coherence elastography,’’ IEEE Trans. Biomed. Eng.57, 953–959 (2010).
  29. E. F. Carbajal, S. A. Baranov, V. G. R. Manne, E. D. Young, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Revealing retroperitoneal liposarcoma morphology using optical coherence tomography,” J. Biomed. Opt.16(2), 020502 (2011). [CrossRef] [PubMed]
  30. S. Wang, T. Sherlock, B. Salazar, N. Sudheendran, R. K. Manapuram, K. Kourentzi, P. Ruchhoeft, R. C. Willson, and K. V. Larin, “Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors,” IEEE Sens. J.13(11), 4534–4541 (2013). [CrossRef]
  31. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005). [CrossRef] [PubMed]
  32. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Phase-sensitive swept source optical coherence tomography for imaging and quantifying of microbubbles in clear and scattering media,” J. Appl. Phys.105(10), 102040 (2009). [CrossRef]
  33. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009). [CrossRef] [PubMed]
  34. S. R. Aglyamov, A. B. Karpiouk, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Am.122(4), 1927–1936 (2007). [CrossRef] [PubMed]
  35. R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-resolution photoacoustic imaging of ocular tissues,” Ultrasound Med. Biol.36(5), 733–742 (2010). [CrossRef] [PubMed]
  36. F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol.93(1-3), 176–191 (2007). [CrossRef] [PubMed]
  37. S. Aglyamov, S. Wang, A. Karpiouk, J. Li, M. Twa, S. Emelianov, and K. V. Larin, “Assessment of the depth-dependence of the mechanical parameters of a layered medium using surface excitation and motion measurements on the surface,” in Proceedings of IEEE International Ultrasonics Symposium (2013), in print.
  38. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface9(70), 831–841 (2012). [PubMed]
  39. C. Li, Z. Huang, and R. K. Wang, “Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry,” Opt. Express19(11), 10153–10163 (2011). [CrossRef] [PubMed]
  40. W. Qi, R. Li, T. Ma, J. Li, K. Kirk Shung, Q. Zhou, and Z. Chen, “Resonant acoustic radiation force optical coherence elastography,” Appl. Phys. Lett.103(10), 103704 (2013). [CrossRef] [PubMed]
  41. M. Razani, A. Mariampillai, C. Sun, T. W. H. Luk, V. X. D. Yang, and M. C. Kolios, “Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms,” Biomed. Opt. Express3(5), 972–980 (2012). [CrossRef] [PubMed]
  42. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett.10(7), 075605 (2013). [CrossRef]
  43. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited