OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2795–2812

Automatic segmentation of choroidal thickness in optical coherence tomography

David Alonso-Caneiro, Scott A. Read, and Michael J. Collins  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2795-2812 (2013)
http://dx.doi.org/10.1364/BOE.4.002795


View Full Text Article

Enhanced HTML    Acrobat PDF (4838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

© 2013 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Image Processing

History
Original Manuscript: September 24, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: November 4, 2013
Published: November 11, 2013

Citation
David Alonso-Caneiro, Scott A. Read, and Michael J. Collins, "Automatic segmentation of choroidal thickness in optical coherence tomography," Biomed. Opt. Express 4, 2795-2812 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2795


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29(2), 144–168 (2010). [CrossRef] [PubMed]
  2. A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983). [CrossRef] [PubMed]
  3. L. M. Parver, “Temperature modulating action of choroidal blood flow,” Eye (Lond.)5(2), 181–185 (1991). [CrossRef] [PubMed]
  4. A. Alm and S. F. Nilsson, “Uveoscleral outflow--a review,” Exp. Eye Res.88(4), 760–768 (2009). [CrossRef] [PubMed]
  5. D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res.26(2), 313–320 (1986). [CrossRef] [PubMed]
  6. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013). [CrossRef] [PubMed]
  7. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009). [CrossRef] [PubMed]
  8. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010). [CrossRef] [PubMed]
  9. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010). [CrossRef] [PubMed]
  10. M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011). [CrossRef] [PubMed]
  11. X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011). [CrossRef] [PubMed]
  12. D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013). [CrossRef] [PubMed]
  13. Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009). [CrossRef] [PubMed]
  14. V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011). [CrossRef] [PubMed]
  15. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011). [CrossRef] [PubMed]
  16. D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013). [CrossRef] [PubMed]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  18. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012). [CrossRef] [PubMed]
  19. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  20. R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008). [CrossRef] [PubMed]
  21. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003). [CrossRef] [PubMed]
  22. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  23. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14(10), 4403–4411 (2006). [CrossRef] [PubMed]
  24. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  25. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express20(3), 3353–3366 (2012). [CrossRef] [PubMed]
  26. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express20(7), 7564–7574 (2012). [CrossRef] [PubMed]
  27. F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express20(1), 385–396 (2012). [CrossRef] [PubMed]
  28. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012). [CrossRef] [PubMed]
  29. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005). [CrossRef] [PubMed]
  30. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express17(18), 15659–15669 (2009). [CrossRef] [PubMed]
  31. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  32. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011). [CrossRef] [PubMed]
  33. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17(26), 23719–23728 (2009). [CrossRef] [PubMed]
  34. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2(6), 1743–1756 (2011). [CrossRef] [PubMed]
  35. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express4(7), 1133–1152 (2013). [CrossRef] [PubMed]
  36. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010). [CrossRef] [PubMed]
  37. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001). [CrossRef] [PubMed]
  38. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010). [CrossRef] [PubMed]
  39. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik1(1), 269–271 (1959). [CrossRef]
  40. F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011). [CrossRef] [PubMed]
  41. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010). [CrossRef] [PubMed]
  42. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009). [CrossRef] [PubMed]
  43. B. J. Antony, M. D. Abràmoff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes,” in SPIE Medical Imaging, (International Society for Optics and Photonics, 2012), 83141G–83141G–83111.
  44. P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013). [CrossRef] [PubMed]
  45. M. Haeker, M. Sonka, R. Kardon, V. A. Shah, X. Wu, and M. D. Abràmoff, “Automated segmentation of intraretinal layers from macular optical coherence tomography images,” in Medical Imaging, (International Society for Optics and Photonics, 2007), 651214–651214–651211.
  46. K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010). [CrossRef] [PubMed]
  47. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012). [CrossRef] [PubMed]
  48. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012). [CrossRef] [PubMed]
  49. Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013). [CrossRef] [PubMed]
  50. J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express4(3), 397–411 (2013). [CrossRef] [PubMed]
  51. S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013). [CrossRef] [PubMed]
  52. K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006). [CrossRef] [PubMed]
  53. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in myopic and non-myopic children assessed with enhanced depth imaging optical coherence tomography,” Invest Ophth Vis Sci, in press (accepted 21/10/2013).
  54. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.
  55. M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011). [CrossRef] [PubMed]
  56. J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013). [CrossRef] [PubMed]
  57. P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011). [CrossRef] [PubMed]
  58. D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004). [CrossRef] [PubMed]
  59. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.679–698 (1986).
  60. W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited