OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2813–2827

A low memory cost model based reconstruction algorithm exploiting translational symmetry for photoacoustic microscopy

Juan Aguirre, Alexia Giannoula, Taisuke Minagawa, Lutz Funk, Pau Turon, and Turgut Durduran  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2813-2827 (2013)
http://dx.doi.org/10.1364/BOE.4.002813


View Full Text Article

Enhanced HTML    Acrobat PDF (1400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model based reconstruction algorithm that exploits translational symmetries for photoacoustic microscopy to drastically reduce the memory cost is presented. The memory size needed to store the model matrix is independent of the number of acquisitions at different positions. This helps us to overcome one of the main limitations of previous algorithms. Furthermore, using the algebraic reconstruction technique and building the model matrix “on the fly”, we have obtained fast reconstructions of simulated and experimental data on both two- and three-dimensional grids using a traditional dark field photoacoustic microscope and a standard personal computer.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.5120) Imaging systems : Photoacoustic imaging

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: August 13, 2013
Revised Manuscript: October 27, 2013
Manuscript Accepted: November 1, 2013
Published: November 12, 2013

Citation
Juan Aguirre, Alexia Giannoula, Taisuke Minagawa, Lutz Funk, Pau Turon, and Turgut Durduran, "A low memory cost model based reconstruction algorithm exploiting translational symmetry for photoacoustic microscopy," Biomed. Opt. Express 4, 2813-2827 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  2. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef] [PubMed]
  3. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010). [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007). [CrossRef] [PubMed]
  5. E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009). [CrossRef] [PubMed]
  6. V. Ntziachristos, “Clinical translation of optical and optoacoustic imaging,” Philos Trans A Math Phys. Eng. Sci. 369, 4666–4678 (2011).
  7. P. B. Garcia-Allende, J. Glatz, M. Koch, V. Ntziachristos, “Enriching the Interventional Vision of Cancer with Fluorescence and Optoacoustic Imaging,” J. Nucl. Med. 54(5), 664–667 (2013). [CrossRef] [PubMed]
  8. D. Razansky, A. Buehler, V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011). [CrossRef] [PubMed]
  9. J. Yao, C. H. Huang, L. Wang, J. M. Yang, L. Gao, K. I. Maslov, J. Zou, L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012). [CrossRef] [PubMed]
  10. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012). [CrossRef] [PubMed]
  11. L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 106007 (2012). [CrossRef] [PubMed]
  12. K. Maslov, G. Stoica, L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005). [CrossRef] [PubMed]
  13. H. F. Zhang, K. Maslov, M. L. Li, G. Stoica, L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Opt. Express 14(20), 9317–9323 (2006). [CrossRef] [PubMed]
  14. M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006). [CrossRef] [PubMed]
  15. M. A. Araque Caballero, A. Rosenthal, J. Gateau, D. Razansky, V. Ntziachristos, “Model-based optoacoustic imaging using focused detector scanning,” Opt. Lett. 37(19), 4080–4082 (2012). [CrossRef] [PubMed]
  16. X. L. Deán-Ben, A. Buehler, V. Ntziachristos, D. Razansky, “Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012). [CrossRef] [PubMed]
  17. A. Rosenthal, D. Razansky, V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010). [CrossRef] [PubMed]
  18. A. Rosenthal, V. Ntziachristos, D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med. Phys. 38(7), 4285–4295 (2011). [CrossRef] [PubMed]
  19. S. Bu, Z. Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda, Y. Asao, “Model-based reconstruction integrated with fluence compensation for photoacoustic tomography,” IEEE Trans. Biomed. Eng. 59(5), 1354–1363 (2012). [CrossRef] [PubMed]
  20. X. L. Dean-Ben, R. Ma, D. Razansky, V. Ntziachristos, “Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities,” IEEE Trans. Med. Imaging 30(2), 401–408 (2011). [CrossRef] [PubMed]
  21. M. Xu, L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005). [CrossRef] [PubMed]
  22. P. Burgholzer, G. J. Matt, M. Haltmeier, G. Paltauf, “Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046706 (2007). [CrossRef] [PubMed]
  23. B. E. Treeby, B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010). [CrossRef] [PubMed]
  24. J. Laufer, F. Norris, J. Cleary, E. Zhang, B. Treeby, B. Cox, P. Johnson, P. Scambler, M. Lythgoe, P. Beard, “In vivo photoacoustic imaging of mouse embryos,” J. Biomed. Opt. 17(6), 061220 (2012). [CrossRef] [PubMed]
  25. G. Paltauf, J. A. Viator, S. A. Prahl, S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002). [CrossRef] [PubMed]
  26. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, J. J. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13(5), 054052 (2008). [CrossRef] [PubMed]
  27. K. Wang, S. A. Ermilov, R. Su, H. P. Brecht, A. A. Oraevsky, M. A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 30(2), 203–214 (2011). [CrossRef] [PubMed]
  28. D. Queirós, X. L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, V. Ntziachristos, “Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography,” J. Biomed. Opt. 18(7), 076014 (2013). [CrossRef] [PubMed]
  29. L. H. Wang, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, New Jersey, 2007).
  30. C. G. Hoelen, F. F. de Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 11 (1999).
  31. K. P. Köstli, P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42(10), 1899–1908 (2003). [CrossRef] [PubMed]
  32. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47(1), N1–N10 (2002). [CrossRef] [PubMed]
  33. G. T. Herman, L. B. Meyer, “Algebraic reconstruction techniques can be made computationally efficient [positron emission tomography application],” IEEE Trans. Med. Imaging 12(3), 600–609 (1993). [CrossRef] [PubMed]
  34. D. Ros, C. Falcón, I. Juvells, J. Pavía, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41(5), 925–937 (1996). [CrossRef] [PubMed]
  35. T. Shin, J. F. Nielsen, K. S. Nayak, “Accelerating dynamic spiral MRI by algebraic reconstruction from undersampled k--t space,” IEEE Trans. Med. Imaging 26(7), 917–924 (2007). [CrossRef] [PubMed]
  36. A. H. Andersen, “Algebraic reconstruction in CT from limited views,” IEEE Trans. Med. Imaging 8(1), 50–55 (1989). [CrossRef] [PubMed]
  37. T. Durduran, R. Choe, W. B. Baker, A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010). [CrossRef]
  38. M. B. Taisuke, A. Pau Giannoula, and T. Durduran, “MBio: a comprehensive Monte-carlo package for Diffuse Correñation Spectroscopy/Tomography,” in European Conferences on iomedical Optics, 2013)
  39. A. Rosenthal, T. Jetzfellner, D. Razansky, V. Ntziachristos, “Efficient framework for model-based tomographic image reconstruction using wavelet packets,” IEEE Trans. Med. Imaging 31(7), 1346–1357 (2012). [CrossRef] [PubMed]
  40. T. Koichi, W. Katsuhiro, F. Kazuhiko, and S. Tsuyoshi, “Advanced model-based reconstruction algorithm for practical three-dimensional photoacoustic imaginbg,” in SPIE, 2011)
  41. B. Shuhui, L. Zhenbao, S. Tsuyoshi, and F. Kazuhiko, “Matrix compression and Compressed sensing reconstruction for photoacoustic tomography,” Elektonika Ir Elektrotechnika, 18 (2012).
  42. B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011). [CrossRef] [PubMed]
  43. X. L. Deán-Ben, V. Ntziachristos, D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012). [CrossRef] [PubMed]
  44. J. Chamorro-Servent, J. Aguirre, J. Ripoll, J. J. Vaquero, M. Desco, “Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies,” Opt. Express 19(12), 11490–11506 (2011). [CrossRef] [PubMed]
  45. J. L. Herraiz, S. España, J. J. Vaquero, M. Desco, J. M. Udías, “FIRST: Fast Iterative Reconstruction Software for (PET) tomography,” Phys. Med. Biol. 51(18), 4547–4565 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited