OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2855–2868

Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues

Xiaoyun Xu, Jie Cheng, Michael J. Thrall, Zhengfan Liu, Xi Wang, and Stephen T.C. Wong  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2855-2868 (2013)
http://dx.doi.org/10.1364/BOE.4.002855


View Full Text Article

Enhanced HTML    Acrobat PDF (1406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lung carcinoma is the leading cause of cancer-related death in the United States, and non-small cell carcinoma accounts for 85% of all lung cancer cases. One major characteristic of non-small cell carcinoma is the appearance of desmoplasia and deposition of dense extracellular collagen around the tumor. The desmoplastic response provides a radiologic target but may impair sampling during traditional image-guided needle biopsy and is difficult to differentiate from normal tissues using single label free imaging modality; for translational purposes, label-free techniques provide a more promising route to clinics. We thus investigated the potential of using multimodal, label free optical microscopy that incorporates Coherent Anti-Stokes Raman Scattering (CARS), Two-Photon Excited AutoFluorescence (TPEAF), and Second Harmonic Generation (SHG) techniques for differentiating lung cancer from normal and desmoplastic tissues. Lung tissue samples from patients were imaged using CARS, TPEAF, and SHG for comparison and showed that the combination of the three non-linear optics techniques is essential for attaining reliable differentiation. These images also illustrated good pathological correlation with hematoxylin and eosin (H&E) stained sections from the same tissue samples. Automated image analysis algorithms were developed for quantitative segmentation and feature extraction to enable lung tissue differentiation. Our results indicate that coupled with automated morphology analysis, the proposed tri-modal nonlinear optical imaging technique potentially offers a powerful translational strategy to differentiate cancer lesions reliably from surrounding non-tumor and desmoplastic tissues.

© 2013 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(270.4180) Quantum optics : Multiphoton processes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:
Optics in Cancer Research

History
Original Manuscript: September 16, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 25, 2013
Published: November 15, 2013

Citation
Xiaoyun Xu, Jie Cheng, Michael J. Thrall, Zhengfan Liu, Xi Wang, and Stephen T.C. Wong, "Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues," Biomed. Opt. Express 4, 2855-2868 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2855


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA Cancer J. Clin.62(1), 10–29 (2012). [CrossRef] [PubMed]
  2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J. Clin.61(2), 69–90 (2011). [CrossRef] [PubMed]
  3. A. Jemal, M. J. Thun, L. A. G. Ries, H. L. Howe, H. K. Weir, M. M. Center, E. Ward, X.-C. Wu, C. Eheman, R. Anderson, U. A. Ajani, B. Kohler, and B. K. Edwards, “Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control,” J. Natl. Cancer Inst.100(23), 1672–1694 (2008). [CrossRef] [PubMed]
  4. D. R. Youlden, S. M. Cramb, and P. D. Baade, “The international epidemiology of lung cancer: geographical distribution and secular trends,” J. Thorac. Oncol.3(8), 819–831 (2008). [CrossRef] [PubMed]
  5. U. Ahmad and F. C. Detterbeck, “Current status of lung cancer screening,” Semin. Thorac. Cardiovasc. Surg.24(1), 27–36 (2012). [CrossRef] [PubMed]
  6. M. Montaudon, V. Latrabe, A. Pariente, O. Corneloup, H. Begueret, and F. Laurent, “Factors influencing accuracy of CT-guided percutaneous biopsies of pulmonary lesions,” Eur. Radiol.14(7), 1234–1240 (2004). [CrossRef] [PubMed]
  7. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev.11, 227–256 (2005). [CrossRef] [PubMed]
  8. K. Moriichi, M. Fujiya, R. Sato, T. Nata, Y. Nomura, N. Ueno, C. Ishikawa, Y. Inaba, T. Ito, K. Okamoto, H. Tanabe, Y. Mizukami, J. Watari, Y. Saitoh, and Y. Kohgo, “Autofluorescence imaging and the quantitative intensity of fluorescence for evaluating the dysplastic grade of colonic neoplasms,” Int. J. Colorectal Dis.27(3), 325–330 (2012). [CrossRef] [PubMed]
  9. M. C. Jacobson, R. deVere White, and S. G. Demos, “In vivo testing of a prototype system providing simultaneous white light and near infrared autofluorescence image acquisition for detection of bladder cancer,” J. Biomed. Opt.17(3), 036011 (2012). [CrossRef] [PubMed]
  10. S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. deVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt.9(4), 767–771 (2004). [CrossRef] [PubMed]
  11. I. Pavlova, K. R. Hume, S. A. Yazinski, R. M. Peters, R. S. Weiss, and W. W. Webb, “Multiphoton microscopy as a diagnostic imaging modality for lung cancer,” Proc. Soc. Photo Opt. Instrum. Eng.7569, 756918 (2010). [PubMed]
  12. I. Pavlova, K. R. Hume, S. A. Yazinski, J. Flanders, T. L. Southard, R. S. Weiss, and W. W. Webb, “Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung,” J. Biomed. Opt.17(3), 036014 (2012). [CrossRef] [PubMed]
  13. F. Vanzi, L. Sacconi, R. Cicchi, and F. S. Pavone, “Protein conformation and molecular order probed by second-harmonic-generation microscopy,” J. Biomed. Opt.17(6), 060901 (2012). [CrossRef] [PubMed]
  14. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012). [CrossRef] [PubMed]
  15. R. M. Bremnes, T. Dønnem, S. Al-Saad, K. Al-Shibli, S. Andersen, R. Sirera, C. Camps, I. Marinez, and L.-T. Busund, “The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer,” J. Thorac. Oncol.6(1), 209–217 (2011). [CrossRef] [PubMed]
  16. J. Adur, V. B. Pelegati, A. A. de Thomaz, M. O. Baratti, L. A. L. A. Andrade, H. F. Carvalho, F. Bottcher-Luiz, and C. L. Cesar, “Second harmonic generation microscopy as a powerful diagnostic imaging modality for human ovarian cancer,” J. Biophoton. In press (2013).
  17. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137(3A), A801–A818 (1965). [CrossRef]
  18. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008). [CrossRef] [PubMed]
  19. L. Gao, F. Li, M. J. Thrall, Y. Yang, J. Xing, A. A. Hammoudi, H. Zhao, Y. Massoud, P. T. Cagle, Y. Fan, K. K. Wong, Z. Wang, and S. T. C. Wong, “On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification,” J. Biomed. Opt.16(9), 096004 (2011). [CrossRef] [PubMed]
  20. L. Gao, H. Zhou, M. J. Thrall, F. Li, Y. Yang, Z. Wang, P. Luo, K. K. Wong, G. S. Palapattu, and S. T. C. Wong, “Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy,” Biomed. Opt. Express2(4), 915–926 (2011). [CrossRef] [PubMed]
  21. Y. Yang, F. Li, L. Gao, Z. Wang, M. J. Thrall, S. S. Shen, K. K. Wong, and S. T. C. Wong, “Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging,” Biomed. Opt. Express2(8), 2160–2174 (2011). [CrossRef] [PubMed]
  22. M. Toshima, Y. Ohtani, and O. Ohtani, “Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung,” Arch. Histol. Cytol.67(1), 31–40 (2004). [CrossRef] [PubMed]
  23. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009). [CrossRef] [PubMed]
  24. C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S.-J. Lin, P. T. So, and C. Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009). [CrossRef] [PubMed]
  25. A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007). [CrossRef] [PubMed]
  26. T. Eto, H. Suzuki, A. Honda, and Y. Nagashima, “The changes of the stromal elastotic framework in the growth of peripheral lung adenocarcinomas,” Cancer77(4), 646–656 (1996). [CrossRef] [PubMed]
  27. R. A. Cairns, R. Khokha, and R. P. Hill, “Molecular mechanisms of tumor invasion and metastasis: an integrated view,” Curr. Mol. Med.3(7), 659–671 (2003). [CrossRef] [PubMed]
  28. P. T. Cagle, T. C. Allen, S. Dacic, K. M. Kerr, and M. B. Beasley, Advances in surgical pathology: lung cancer (Wolters Kluwer Health: Lippincott Williams & Wilkins, Philadelphia, 2010).
  29. I. J. Fidler, “The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited,” Nat. Rev. Cancer3(6), 453–458 (2003). [CrossRef] [PubMed]
  30. L. M. Demarchi, M. M. Reis, S. A. Palomino, C. Farhat, T. Y. Takagaki, R. Beyruti, P. H. Saldiva, and V. L. Capelozzi, “Prognostic Values of Stromal Proportion and PCNA, Ki-67, And P53 Proteins in Patients with Resected Adenocarcinoma of the Lung,” Mod. Pathol.13(5), 511–520 (2000). [CrossRef] [PubMed]
  31. S. Sternberg, “Biomedical Image Processing,” IEEE Computer16(1), 22–34 (1983). [CrossRef]
  32. Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis, “Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images,” Med. Image Anal.2(2), 143–168 (1998). [CrossRef] [PubMed]
  33. M. H. F. Wilkinson, Digital Image Analysis of Microbes: Imaging, Morphometry, Fluorometry and Motility Techniques and Applications (John Wiley & Sons, New York, 1998).
  34. P. K. S. J. N. Kapur and A. C. K. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram,” Comput. Vis. Graph. Image Process29, 273–285 (1985).
  35. R. Navab, D. Strumpf, B. Bandarchi, C.-Q. Zhu, M. Pintilie, V. R. Ramnarine, E. Ibrahimov, N. Radulovich, L. Leung, M. Barczyk, D. Panchal, C. To, J. J. Yun, S. Der, F. A. Shepherd, I. Jurisica, and M.-S. Tsao, “Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer,” Proc. Natl. Acad. Sci. U.S.A.108(17), 7160–7165 (2011). [CrossRef] [PubMed]
  36. M. Otranto, V. Sarrazy, F. Bonté, B. Hinz, G. Gabbiani, and A. Desmoulière, “The role of the myofibroblast in tumor stroma remodeling,” Cell Adhes. Migr.6(3), 203–219 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited