OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2869–2879

Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation

Aurélien Bègue, Eirini Papagiakoumou, Ben Leshem, Rossella Conti, Leona Enke, Dan Oron, and Valentina Emiliani  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 2869-2879 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of wavefront shaping to generate extended optical excitation patterns which are confined to a predetermined volume has become commonplace on various microscopy applications. For multiphoton excitation, three-dimensional confinement can be achieved by combining the technique of temporal focusing of ultra-short pulses with different approaches for lateral light shaping, including computer generated holography or generalized phase contrast. Here we present a theoretical and experimental study on the effect of scattering on the propagation of holographic beams with and without temporal focusing. Results from fixed and acute cortical slices show that temporally focused spatial patterns are extremely robust against the effects of scattering and this permits their three-dimensionally confined excitation for depths more than 500 µm. Finally we prove the efficiency of using temporally focused holographic beams in two-photon stimulation of neurons expressing the red-shifted optogenetic channel C1V1.

© 2013 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(230.6120) Optical devices : Spatial light modulators
(290.0290) Scattering : Scattering
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:

Original Manuscript: September 9, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 11, 2013
Published: November 18, 2013

Aurélien Bègue, Eirini Papagiakoumou, Ben Leshem, Rossella Conti, Leona Enke, Dan Oron, and Valentina Emiliani, "Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation," Biomed. Opt. Express 4, 2869-2879 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999). [CrossRef] [PubMed]
  2. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5(9), 821–827 (2008). [CrossRef] [PubMed]
  3. P. Wang and R. Menon, “Three-dimensional Lithography via Digital Holography,” in Frontiers in Optics 2012/Laser Science XXVIII (Optical Society of America, 2012), p. FTu3A.4.
  4. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002). [CrossRef]
  5. R. W. Gerchberg and W. O. Saxton, “A pratical algorithm for the determination of the phase from image and diffraction pictures,” Optik35, 237–246 (1972).
  6. F. Wyrowski and O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A6(8), 1171 (1989). [CrossRef]
  7. V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007). [CrossRef] [PubMed]
  8. S. Yang, E. Papagiakoumou, M. Guillon, V. de Sars, C. M. Tang, and V. Emiliani, “Three-dimensional holographic photostimulation of the dendritic arbor,” J. Neural Eng.8(4), 046002 (2011). [CrossRef] [PubMed]
  9. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011). [CrossRef] [PubMed]
  10. M. A. Go, C. Stricker, S. Redman, H.-A. Bachor, and V. R. Daria, “Simultaneous multi-site two-photon photostimulation in three dimensions,” J. Biophotonics5(10), 745–753 (2012). [CrossRef] [PubMed]
  11. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express16(26), 22039–22047 (2008). [CrossRef] [PubMed]
  12. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express17(7), 5391–5401 (2009). [CrossRef] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  14. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nature Photon.4(5), 320–322 (2010). [CrossRef]
  15. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  16. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon.5(6), 372–377 (2011). [CrossRef]
  17. K. D. Wulff, D. G. Cole, R. L. Clark, R. Dileonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14(9), 4170–4175 (2006). [CrossRef] [PubMed]
  18. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express15(9), 5801–5808 (2007). [CrossRef] [PubMed]
  19. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon.4(6), 388–394 (2010). [CrossRef]
  20. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151(4-6), 207–211 (1998). [CrossRef]
  21. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419(6903), 145–147 (2002). [CrossRef] [PubMed]
  22. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nature Photon.4(11), 780–785 (2010). [CrossRef]
  23. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics (Springer, 2009).
  24. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  25. E. Papagiakoumou, A. Bègue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nature Photon.7(4), 274–278 (2013). [CrossRef]
  26. H. Dana, N. Kruger, A. Ellman, and S. Shoham, “Line temporal focusing characteristics in transparent and scattering media,” Opt. Express21(5), 5677–5687 (2013). [CrossRef] [PubMed]
  27. O. Yizhar, L. E. Fenno, M. Prigge, F. Schneider, T. J. Davidson, D. J. O’Shea, V. S. Sohal, I. Goshen, J. Finkelstein, J. T. Paz, K. Stehfest, R. Fudim, C. Ramakrishnan, J. R. Huguenard, P. Hegemann, and K. Deisseroth, “Neocortical excitation/inhibition balance in information processing and social dysfunction,” Nature477(7363), 171–178 (2011). [CrossRef] [PubMed]
  28. E. Y. S. Yew, H. Choi, D. Kim, and P. T. C. So, “Wide-field two-photon microscopy with temporal focusing and HiLo background rejection,” Proc. SPIE7903, 79031O (2011). [CrossRef]
  29. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express4(7), 995–1005 (2013). [CrossRef] [PubMed]
  30. S. Gasparini, M. Migliore, and J. C. Magee, “On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons,” J. Neurosci.24(49), 11046–11056 (2004). [CrossRef] [PubMed]
  31. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods111(1), 29–37 (2001). [CrossRef] [PubMed]
  32. E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express19(23), 22755–22774 (2011). [CrossRef] [PubMed]
  33. R. Prakash, O. Yizhar, B. Grewe, C. Ramakrishnan, N. Wang, I. Goshen, A. M. Packer, D. S. Peterka, R. Yuste, M. J. Schnitzer, and K. Deisseroth, “Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation,” Nat. Methods9(12), 1171–1179 (2012). [CrossRef] [PubMed]
  34. E. Y. S. Yew, C. J. R. Sheppard, and P. T. C. So, “Temporally focused wide-field two-photon microscopy: Paraxial to vectorial,” Opt. Express21(10), 12951–12963 (2013). [CrossRef] [PubMed]
  35. F. Duck, Physical Properties of Tissue: A Comprehensive Reference Network (Academic Press, 1990).
  36. E. Tal and Y. Silberberg, “Transformation from an ultrashort pulse to a spatiotemporal speckle by a thin scattering surface,” Opt. Lett.31(23), 3529–3531 (2006). [CrossRef] [PubMed]
  37. J. Mattis, K. M. Tye, E. A. Ferenczi, C. Ramakrishnan, D. J. O’Shea, R. Prakash, L. A. Gunaydin, M. Hyun, L. E. Fenno, V. Gradinaru, O. Yizhar, and K. Deisseroth, “Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins,” Nat. Methods9(2), 159–172 (2011). [CrossRef] [PubMed]
  38. A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited