OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2880–2892

Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging

Tyler B. Rice, Elliott Kwan, Carole K. Hayakawa, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 2880-2892 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2076 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

© 2013 Optical Society of America

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Speckle Imaging and Diagnostics

Original Manuscript: August 19, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 22, 2013
Published: November 19, 2013

Tyler B. Rice, Elliott Kwan, Carole K. Hayakawa, Anthony J. Durkin, Bernard Choi, and Bruce J. Tromberg, "Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging," Biomed. Opt. Express 4, 2880-2892 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Berne and R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics, Dover ed. (Dover Publications, Mineola, N.Y., 2000), pp. vii, 376 p.
  2. R. Pecora, Dynamic light scattering: applications of photon correlation spectroscopy (Plenum Press, New York, 1985), pp. xiv, 420 p.
  3. A. Wax and V. Backman, Biomedical applications of light scattering, Biophotonics series (McGraw-Hill, New York, 2010), pp. xv, 368 p., 316 p. of plates.
  4. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.27(10), 597–604 (1980). [CrossRef] [PubMed]
  5. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt.33(16), 3549–3558 (1994). [CrossRef] [PubMed]
  6. P. A. Oberg, “Laser-Doppler flowmetry,” Crit. Rev. Biomed. Eng.18(2), 125–163 (1990). [PubMed]
  7. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988). [CrossRef] [PubMed]
  8. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990). [CrossRef]
  9. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(4), 3350–3358 (1995). [CrossRef] [PubMed]
  10. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14(1), 192–215 (1997). [CrossRef]
  11. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004). [CrossRef] [PubMed]
  12. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981). [CrossRef]
  13. J. D. Briers, G. Richards, and X. W. He, “Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999). [CrossRef] [PubMed]
  14. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110 (2005). [CrossRef]
  15. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  16. M. S. Singh, K. Rajan, and R. M. Vasu, “Estimation of elasticity map of soft biological tissue mimicking phantom using laser speckle contrast analysis,” J. Appl. Phys.109, 104704 (2011).
  17. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quantum Spectrosc. Radiative Transf.52(6), 713–727 (1994). [CrossRef]
  18. N. Dögnitz and G. Wagnières, “Determination of tissue optical properties by steady-state spatial frequency-domain reflectometry,” Lasers Med. Sci.13, 55–65 (1998). [CrossRef]
  19. D. Cuccia, B. Tromberg, R. Frostig, and D. Abookasis, “Quantitative In Vivo Imaging of Tissue Absorption, Scattering, and Hemoglobin Concentration in Rat Cortex Using Spatially Modulated Structured Light,” in In Vivo Optical Imaging of Brain Function, Second Edition (CRC Press, 2009), pp. 339–361.
  20. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  21. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  22. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009). [CrossRef] [PubMed]
  23. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010). [CrossRef] [PubMed]
  24. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009). [CrossRef]
  25. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015 (2011). [CrossRef] [PubMed]
  26. S. D. Konecky, T. Rice, A. J. Durkin, and B. J. Tromberg, “Imaging scattering orientation with spatial frequency domain imaging,” J. Biomed. Opt.16(12), 126001 (2011). [CrossRef] [PubMed]
  27. S. D. Konecky, C. M. Owen, T. Rice, P. A. Valdés, K. Kolste, B. C. Wilson, F. Leblond, D. W. Roberts, K. D. Paulsen, and B. J. Tromberg, “Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models,” J. Biomed. Opt.17(5), 056008 (2012). [CrossRef] [PubMed]
  28. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011). [CrossRef] [PubMed]
  29. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011). [CrossRef] [PubMed]
  30. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett.31(23), 3465–3467 (2006). [CrossRef] [PubMed]
  31. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009). [CrossRef] [PubMed]
  32. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  33. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Co., Englewood, Colo., 2007), pp. xvi, 387 p.
  34. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999). [CrossRef]
  35. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  36. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991). [CrossRef] [PubMed]
  37. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987). [CrossRef]
  38. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio.47(2), 131–146 (1995). [CrossRef]
  39. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008). [CrossRef] [PubMed]
  40. J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006). [CrossRef] [PubMed]
  41. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006). [CrossRef] [PubMed]
  42. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 687007 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited