OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2893–2910

Method for the discrimination of superficial and deep absorption variations by time domain fNIRS

Lucia Zucchelli, Davide Contini, Rebecca Re, Alessandro Torricelli, and Lorenzo Spinelli  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 2893-2910 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for the discrimination of superficial and deep absorption variations by time domain functional near infrared spectroscopy is presented. The method exploits the estimate of the photon time-dependent pathlength in different domains of the sampled medium and makes use of an approach based on time-gating of the photon distribution of time-of-flights. Validation of the method is performed in the two-layer geometry to focus on muscle and head applications. Numerical simulations varied the thickness of the upper layer, the interfiber distance, the shape of the instrument response function and the photon counts. Preliminary results from in vivo data are also shown.

© 2013 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: September 23, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 12, 2013
Published: November 20, 2013

Lucia Zucchelli, Davide Contini, Rebecca Re, Alessandro Torricelli, and Lorenzo Spinelli, "Method for the discrimination of superficial and deep absorption variations by time domain fNIRS," Biomed. Opt. Express 4, 2893-2910 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012). [CrossRef] [PubMed]
  2. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett.29(15), 1766–1768 (2004). [CrossRef] [PubMed]
  3. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20(10), 435–442 (1997). [CrossRef] [PubMed]
  4. Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997). [CrossRef] [PubMed]
  5. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011). [CrossRef] [PubMed]
  6. L. Gagnon, M. A. Yücel, M. Dehaes, R. J. Cooper, K. L. Perdue, J. Selb, T. J. Huppert, R. D. Hoge, and D. A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements,” Neuroimage59(4), 3933–3940 (2012). [CrossRef] [PubMed]
  7. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012). [CrossRef] [PubMed]
  8. L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. A. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage59(3), 2518–2528 (2012). [CrossRef] [PubMed]
  9. R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage55(4), 1679–1685 (2011). [CrossRef] [PubMed]
  10. F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage72, 106–119 (2013). [CrossRef] [PubMed]
  11. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001). [CrossRef] [PubMed]
  12. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002). [CrossRef] [PubMed]
  13. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004). [CrossRef] [PubMed]
  14. A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt.17(5), 057005 (2012). [CrossRef] [PubMed]
  15. L. Hervé, A. Puszka, A. Planat-Chrétien, and J. M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt.51(25), 5978–5988 (2012). [CrossRef] [PubMed]
  16. A. Puszka, L. Hervé, A. Planat-Chrétien, A. Koenig, J. Derouard, and J. M. Dinten, “Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion,” Biomed. Opt. Express4(4), 569–583 (2013). [CrossRef] [PubMed]
  17. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908 (2007). [CrossRef]
  18. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006). [CrossRef] [PubMed]
  19. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions and Software (SPIE Press, 2010).
  20. M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage21(1), 99–111 (2004). [CrossRef] [PubMed]
  21. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal,” Appl. Opt.42(16), 2915–2922 (2003). [CrossRef] [PubMed]
  22. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993). [CrossRef] [PubMed]
  23. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  24. P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993). [CrossRef]
  25. A. Torricelli, L. Spinelli, J. Kaethner, J. Selbeck, A. Franceschini, P. Rozzi, and M. Zude, “Non-destructive optical assessment of photon path lengths in fruit during ripening: implications on design of continuous-wave sensors,” presented at the International Conference Of Agricultural Engineering, CIGR-AgEng2012, Valencia, Spain, 8–12 July 2012.
  26. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express14(12), 5418–5432 (2006). [CrossRef] [PubMed]
  27. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005). [CrossRef] [PubMed]
  28. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance at null source–detector separation using a fast gated single-photon avalanche diode,” Phys. Rev. Lett.100, 138101 (2008). [CrossRef] [PubMed]
  29. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006). [CrossRef] [PubMed]
  30. M. Butti, D. Contini, E. Molteni, M. Caffini, L. Spinelli, G. Baselli, A. M. Bianchi, S. Cerutti, R. Cubeddu, and A. Torricelli, “Effect of prolonged stimulation on cerebral hemodynamic: a time-resolved fNIRS study,” Med. Phys.36(9), 4103–4114 (2009). [CrossRef] [PubMed]
  31. E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012). [CrossRef] [PubMed]
  32. E. M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007). [CrossRef] [PubMed]
  33. F. Martelli, A. Pifferi, D. Contini, L. Spinelli, A. Torricelli, H. Wabnitz, R. Macdonald, A. Sassaroli, and G. Zaccanti, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 1: basic concepts,” J. Biomed. Opt.18(6), 066014 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited