OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2911–2924

Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system

Stefan A. Carp, Amir Y. Sajjadi, Christy M. Wanyo, Qianqian Fang, Michelle C. Specht, Lidia Schapira, Beverly Moy, Aditya Bardia, David A. Boas, and Steven J. Isakoff  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2911-2924 (2013)
http://dx.doi.org/10.1364/BOE.4.002911


View Full Text Article

Enhanced HTML    Acrobat PDF (2340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near infrared dynamic diffuse optical tomography measurements of breast hemodynamics during fractional mammographic compression offer a novel contrast mechanism for detecting breast cancer and monitoring chemotherapy. Tissue viscoelastic relaxation during the compression period leads to a slow reduction in the compression force and reveals biomechanical and metabolic differences between healthy and lesion tissue. We measured both the absolute values and the temporal evolution of hemoglobin concentration during 25-35 N of compression for 22 stage II and III breast cancer patients scheduled to undergo neoadjuvant chemotherapy. 17 patients were included in the group analysis (average tumor size 3.2 cm, range: 1.3-5.7 cm). We observed a statistically significant differential decrease in total and oxy-hemoglobin, as well as in hemoglobin oxygen saturation in tumor areas vs. healthy tissue, as early as 30 seconds into the compression period. The hemodynamic contrast is likely driven by the higher tumor stiffness and different viscoelastic relaxation rate, as well as the higher tumor oxygen metabolism rate.

© 2013 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optics in Cancer Research

History
Original Manuscript: July 26, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 25, 2013
Published: November 22, 2013

Citation
Stefan A. Carp, Amir Y. Sajjadi, Christy M. Wanyo, Qianqian Fang, Michelle C. Specht, Lidia Schapira, Beverly Moy, Aditya Bardia, David A. Boas, and Steven J. Isakoff, "Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system," Biomed. Opt. Express 4, 2911-2924 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Cancer Facts & Figs. 2013 (American Cancer Society, Atlanta, 2013).
  2. E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D’Orsi, R. Jong, M. Rebner, and Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group, “Diagnostic performance of digital versus film mammography for breast-cancer screening,” N. Engl. J. Med.353(17), 1773–1783 (2005). [CrossRef] [PubMed]
  3. M. L. Zuley, A. I. Bandos, M. A. Ganott, J. H. Sumkin, A. E. Kelly, V. J. Catullo, G. Y. Rathfon, A. H. Lu, and D. Gur, “Digital breast tomosynthesis versus supplemental diagnostic mammographic views for evaluation of noncalcified breast lesions,” Radiology266(1), 89–95 (2013). [CrossRef] [PubMed]
  4. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012). [CrossRef] [PubMed]
  5. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment f breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010). [CrossRef] [PubMed]
  6. R. Choe and T. Durduran, “Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy,” IEEE J. Sel. Top. Quantum Electron.18(4), 1367–1386 (2012). [CrossRef] [PubMed]
  7. A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy,” Philos Trans A Math Phys Eng. Sci.369, 4512–4530 (2011).
  8. R. Al abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A28(12), 2473–2493 (2011). [CrossRef]
  9. R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res.9(6), R88 (2007). [CrossRef] [PubMed]
  10. L. S. Fournier, D. Vanel, A. Athanasiou, W. Gatzemeier, I. V. Masuykov, A. R. Padhani, C. Dromain, K. Galetti, R. Sigal, A. Costa, and C. Balleyguier, “Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels,” Eur. J. Radiol.69(1), 43–49 (2009). [CrossRef] [PubMed]
  11. S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt.48(10), D130–D136 (2009). [CrossRef] [PubMed]
  12. S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express16(20), 16064–16078 (2008). [CrossRef] [PubMed]
  13. M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011). [CrossRef] [PubMed]
  14. R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Halnan, “Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma,” Lancet323(8369), 131–134 (1984). [CrossRef] [PubMed]
  15. C. B. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, “Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method,” Cancer Res.52(6), 1592–1597 (1992). [PubMed]
  16. J. M. Chang, I. A. Park, S. H. Lee, W. H. Kim, M. S. Bae, H. R. Koo, A. Yi, S. J. Kim, N. Cho, and W. K. Moon, “Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer,” Eur. Radiol.23(9), 2450–2458 (2013). [CrossRef] [PubMed]
  17. M. Sridhar and M. F. Insana, “Ultrasonic measurements of breast viscoelasticity,” Med. Phys.34(12), 4757–4767 (2007). [CrossRef] [PubMed]
  18. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt.11(6), 064016 (2006). [CrossRef] [PubMed]
  19. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Appl. Opt.45(31), 8142–8151 (2006). [CrossRef] [PubMed]
  20. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009). [CrossRef] [PubMed]
  21. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011). [CrossRef] [PubMed]
  22. D. Boas, T. Gaudette, and S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express8(5), 263–270 (2001). [CrossRef] [PubMed]
  23. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett.29(3), 256–258 (2004). [CrossRef] [PubMed]
  24. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl. Opt.44(10), 1858–1869 (2005). [CrossRef] [PubMed]
  25. H. Q. Woodard and D. R. White, “The composition of body tissues,” Br. J. Radiol.59(708), 1209–1218 (1986). [CrossRef] [PubMed]
  26. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. R. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithms,” IEEE Trans. Med. Imaging14(3), 504–514 (1995). [CrossRef] [PubMed]
  27. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol.52(14), 4121–4136 (2007). [CrossRef] [PubMed]
  28. A. A. Gilad, T. Israely, H. Dafni, G. Meir, B. Cohen, and M. Neeman, “Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis,” Int. J. Cancer117(2), 202–211 (2005). [CrossRef] [PubMed]
  29. S. Dische, M. I. Saunders, R. Sealy, I. D. Werner, N. Verma, C. Foy, and S. M. Bentzen, “Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial,” Radiother. Oncol.53(2), 93–98 (1999). [CrossRef] [PubMed]
  30. D. R. White, H. Q. Woodard, and S. M. Hammond, “Average soft-tissue and bone models for use in radiation dosimetry,” Br. J. Radiol.60(717), 907–913 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited