OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2925–2937

Luminous fabric devices for wearable low-level light therapy

Jing Shen, Chunghin Chui, and Xiaoming Tao  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2925-2937 (2013)
http://dx.doi.org/10.1364/BOE.4.002925


View Full Text Article

Enhanced HTML    Acrobat PDF (2689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a flexible luminous fabric device was developed and investigated for wearable three-dimensionally fitted low-level light therapy. The fabric device exhibited excellent optical and thermal properties. Its optical power density and operating temperature were stable during usage for 10 hours. In vitro experiments demonstrated a significant increase in collagen production in human fibroblast irradiated by the fabric device, compared with the fibroblast without light irradiation. A series of tests were conducted for the safety of the fabric for human skin contact according to ISO standard ISO 10993-1:2003. The results showed that there was no potential hazard when the luminous fabrics were in direct contact with human skin.

© 2013 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: August 6, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 21, 2013
Published: November 22, 2013

Citation
Jing Shen, Chunghin Chui, and Xiaoming Tao, "Luminous fabric devices for wearable low-level light therapy," Biomed. Opt. Express 4, 2925-2937 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. I. Grossweiner, The Science of phototherapy: an introduction (Springer New York, 2005)
  2. E. L. Tanzi, J. R. Lupton, and T. S. Alster, “Lasers in dermatology: Four decades of progress,” J. Am. Acad. Dermatol.49(1), 1–34 (2003). [CrossRef] [PubMed]
  3. R. Roelandts, “The history of phototherapy: something new under the sun?” J. Am. Acad. Dermatol.46(6), 926–930 (2002). [CrossRef] [PubMed]
  4. R. J. Cremer, P. W. Perryman, and D. H. Richards, “Influence of light on the hyperbilirubinaemia of infants,” Lancet271(7030), 1094–1097 (1958). [CrossRef] [PubMed]
  5. F. H. Montgomery, “The present status of phototherapy,” J.Cutan. Dis.21, 529–548 (1903).
  6. K. L. Tan and W. H. Boon, “A simple method of phototherapy: inexpensive, blue incandescent bulbs,” Clin. Pediatr. (Phila.)13(12), 1048–1051 (1974). [CrossRef] [PubMed]
  7. L. D. Houk and T. Humphreys, “Masers to magic bullets: an updated history of lasers in dermatology,” Clin. Dermatol.25(5), 434–442 (2007). [CrossRef] [PubMed]
  8. P. Boixeda, M. Calvo, and L. Bagazgoitia, “Recent advances in laser therapy and other technologies,” Actas Dermosifiliogr.99(4), 262–268 (2008). [CrossRef] [PubMed]
  9. D. Barolet, “Light-emitting diodes (LEDs) in dermatology,” Semin. Cutan. Med. Surg.27(4), 227–238 (2008). [CrossRef] [PubMed]
  10. Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry Mosc.69(1), 81–90 (2004). [CrossRef] [PubMed]
  11. P. F. Sebbe, A. B. Villaverde, L. M. Moreira, A. M. Barbosa, and N. Veissid, “Characterization of a novel LEDs device prototype for neonatal jaundice and its comparison with fluorescent lamps sources: phototherapy treatment of hyperbilirubinemia in wistarrats,” Spectros.23(5-6), 243–255 (2009). [CrossRef]
  12. X. M. Tao, Smart Fibres, Fabrics and Clothing (CRC press, 2001).
  13. S. Jung, C. Lauterbach, M. Strasser, and W. Weber, “Enabling technologies for disappearing electronics in smart textiles,” in Proceedings of IEEE Conference on International Solid-State Circuits (San Francisco, 2003), pp.386–387. [CrossRef]
  14. J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, “Smart clothing prototype for the arctic environment,” Pers. Ubiq. Comp.6(1), 3–16 (2002). [CrossRef]
  15. L. Shu, T. Hua, Y. Y. Wang, Q. Li, D. D. Feng, and X. M. Tao, “In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array,” IEEE Trans. Inform. Technol. Biomed.14, 767–775 (2010).
  16. X. M. Tao, “Nerves for Smart Clothing – Optical Fibre Sensors and their Responses,” Intern. J. Clothing Sci. Technol.14(3/4), 157–168 (2002). [CrossRef]
  17. Z. F. Zhang and X. M. Tao, “Synergetic effects of humidity and temperature on PMMA based fiber Bragg gratings,” J. Lightwave Technol.30(6), 841–845 (2012). [CrossRef]
  18. M. El-Sherif, “Smart fabrics: integrating fiber optic sensors and information networks,” Stud. Health Technol. Inform.108, 317–323 (2004). [PubMed]
  19. M. El-Sherif, “Smart structures and intelligent systems for health monitoring and diagnostics,” Appl. Bionics Biomech.2(3-4), 161–170 (2005). [CrossRef]
  20. L. V. Langenhove, Smart textiles for medicine and healthcare (Woodhead, 2007).
  21. S. Park and S. Jayaraman, “Enhancing the quality of life through wearable technology,” IEEE Eng. Med. Biol. Mag.22(3), 41–48 (2003). [CrossRef] [PubMed]
  22. ISO 10993–1:2003 Biological evaluation of medical devices–Part 1: Evaluation and testing.
  23. ISO 10993–5:2009 Biological evaluation of medical devices, Part 5:Test for in vitro cytotoxicity.
  24. ISO 10993–10:2002/Amd. 1: 2006 Biological evaluation of medical device, Part 10: Test for irritation and delayed-type hypersensitivity.
  25. D. Graham-Rowe, “Photonic fabrics take shape,” Nat. Photonics1, 6–7 (2007).
  26. V. Koncar, “Optical fiber fabric displays,” Opt. Photon. News16(4), 40–44 (2005). [CrossRef]
  27. A. Harlin, M. Mäkinen, and A. Vuorivirta, “Development of polymeric optical fibre fabrics as illumination elements and textile displays,” AutexRes. J.3, 1–8 (2003).
  28. M. H. Im, E. J. Park, C. H. Kim, and M. S. Lee, “Modification of plastic optical fiber for side-illumination,” Human-Comp. Interac.Interac Platforms Tech.4551, 1123–1129 (2007). [CrossRef]
  29. C. F. J. Pun, Z. Y. Liu, M. L. V. Tse, X. Chen, X. M. Tao, and H. Y. Tam, “Side-illumination fluorescence dye-doped-clad pmma-core polymer optical fiber: potential intrinsic light source for biosensing,” IEEE Photon. Technol. Lett.24(11), 960–962 (2012). [CrossRef]
  30. H. Chi, X. M. Tao, D. X. Yang, and K. S. Chen, “Simultaneous measurement of axial strain, temperature, and transverse load by a superstructure fiber grating,” Opt. Lett.26(24), 1949–1951 (2001). [CrossRef] [PubMed]
  31. B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A. Ajji, R. Wingfield, C. Dubois, and M. Skorobogatiy, “Color-changing and color-tunable photonic bandgap fiber textiles,” Opt. Express16(20), 15677–15693 (2008). [CrossRef] [PubMed]
  32. D. Q. Ying, X. M. Tao, W. Zheng, and G. F. Wang, “Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches,” Smart Mater. Struct.22(1), 015004 (2013). [CrossRef]
  33. J. Shen, X. M. Tao, D. Q. Ying, C. Y. Hui, and G. F. Wang, “Light emitting fabrics integrated with structured polymer optical fibers treated with infrared CO2 laser,” Text. Res. J.83(7), 730–739 (2013). [CrossRef]
  34. S. M. Skinner, J. P. Gage, P. A. Wilce, and R. M. Shaw, “A preliminary study of the effects of laser radiation on collagen metabolism in cell culture,” Aust. Dent. J.41(3), 188–192 (1996). [CrossRef] [PubMed]
  35. Golden DRAGON® Enhanced thin film LED, LR W5SM, Data Sheet, OSRAM Opto Semiconductors GmbH, Germany.
  36. Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” J. Clin. Laser Med. Surg.14(3), 129–132 (1996). [PubMed]
  37. T. Karu, “Primary and secondary mechanisms of action of visible to near-IR radiation on cells,” J. Photochem. Photobiol. B49(1), 1–17 (1999). [CrossRef] [PubMed]
  38. M. S. Ribeiro, D. F. Da Silva, C. E. De Araújo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell, “Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study,” J. Clin. Laser Med. Surg.22(1), 59–66 (2004). [CrossRef] [PubMed]
  39. P. S. Szczepanek, C. S. Gault, and H. I. Mandelberg, “Dependence of LED light distribution on electrical drive parameters,” J. Appl. Phys.48(7), 3183–3184 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited