OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2962–2987

Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography

Dong-hak Choi, Reiko Yoshimura, and Kohji Ohbayashi  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 12, pp. 2962-2987 (2013)
http://dx.doi.org/10.1364/BOE.4.002962


View Full Text Article

Enhanced HTML    Acrobat PDF (4981 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained.

© 2013 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: August 27, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 18, 2013
Published: November 22, 2013

Citation
Dong-hak Choi, Reiko Yoshimura, and Kohji Ohbayashi, "Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography," Biomed. Opt. Express 4, 2962-2987 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-12-2962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler and J. G. Fujimoto eds., Optical Coherence Tomography: Technology and Applications (Springer-Verlag, Berlin, 2008).
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  5. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  6. B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, Berlin, 2008), pp. 209–237.
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  8. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett.30(23), 3159–3161 (2005). [CrossRef] [PubMed]
  9. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005). [CrossRef] [PubMed]
  10. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  11. B. D. Goldberg, S. M. R. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009). [CrossRef] [PubMed]
  12. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  14. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  15. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” Proc. SPIE7554(75541F), 75541F (2010). [CrossRef]
  16. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  17. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012). [CrossRef] [PubMed]
  18. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213(82130M), 82130M (2012). [CrossRef]
  19. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  20. D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, S. O’Connor, M. N. Sysak, and L. Johanssen, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE6847(68472P), 68472P(2008). [CrossRef]
  21. S. O’Connor, M. A. Bernacil, A. DeKelaita, B. Maher, and D. Derickson, “100 kHz axial scan rate swept-wavelength OCT using sampled grating distributed Bragg reflector lasers,” Proc. SPIE7168(716825), 716825(2009). [CrossRef]
  22. B. George and D. Derickson, “High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode source for OCT resolution enhancement,” Proc. SPIE7554(75542O), 75542O (2010). [CrossRef]
  23. J. Ensher, P. Boschert, K. Featherston, J. Huber, M. Crawford, M. Minneman, C. Chiccone, and D. Derickson, “Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography,” Proc. SPIE8213(82130T), 82130T(2012). [CrossRef]
  24. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993). [CrossRef]
  25. Y. Tohmori, Y. Yoshikuni, T. Tamamura, H. Ishii, Y. Kondo, and M. Yamamoto, “Broad-range wavelength tuning in DBR lasers with super structure grating (SSG),” IEEE Photon. Technol. Lett.5(2), 126–129 (1993). [CrossRef]
  26. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett.32(5), 454–455 (1996). [CrossRef]
  27. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super- structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron.32(3), 433–441 (1996). [CrossRef]
  28. M. Öberg, S. Nilsson, K. Streubel, J. Wallin, L. Bäckbom, and T. Klinga, “74 nm wavelength tuning range of an InGaAsP-InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector,” IEEE Photon. Technol. Lett.5(7), 735–737 (1993). [CrossRef]
  29. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005). [CrossRef]
  30. R. Laroy, G. Morthier, T. Mullane, M. Todd, and R. Baets, “Stabilisation and control of widely tunable MG-Y lasers with integrated photodetectors,” IET Optoelectron.1(1), 35–38 (2007). [CrossRef]
  31. T. Amano, H. Hiro-Oka, D. H. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005). [CrossRef] [PubMed]
  32. O. Ishida, Y. Tada, N. Shibata, and H. Ishii, “Fast and stable frequency switching employing a delayed self-duplex (DSD) light source,” IEEE Photon. Technol. Lett.6(1), 13–16 (1994). [CrossRef]
  33. J. E. Simsarian, M. C. Larson, H. E. Garrett, H. Xu, and T. A. Strand, “Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE Photon. Technol. Lett.18(4), 565–567 (2006). [CrossRef]
  34. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008). [CrossRef]
  35. N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Suppression of Thermal Wavelength Drift in Super-Structure Grating Distributed Bragg Reflector (SSG-DBR) Laser with Thermal Drift Compensator,” IEEE J. Sel. Top. Quantum Electron.13(5), 1164–1169 (2007). [CrossRef]
  36. T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express17(23), 21257–21270 (2009). [CrossRef] [PubMed]
  37. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Obayashi, “OFDR with an SSG-DBR laser,” Proc. SPIE5531, 375–382 (2004). [CrossRef]
  38. D. Choi, T. Amano, H. Hiro-Oka, H. Furukawa, T. Miyazawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Tissue imaging by OFDR-OCT using an SSG-DBR laser,” Proc. SPIE5690, 101–113 (2005). [CrossRef]
  39. D. Choi, H. Hiro-oka, T. Amano, H. Furukawa, N. Fujiwara, H. Ishii, and K. Ohbayashi, “A method of improving scanning speed and resolution of OFDR-OCT using multiple SSG-DBR lasers simultaneously,” Proc. SPIE6429(64292E), 64292E (2007). [CrossRef]
  40. K. Ohbayashi, T. Amano, H. Hiro-Oka, H. Furukawa, D. Choi, P. Jayavel, R. Yoshimura, K. Asaka, N. Fujiwara, H. Ishii, M. Suzuki, M. Nakanishi, and K. Shimizu, “Discretely swept optical-frequency domain imaging toward high-resolution, high-speed, high-sensitivity, and long-depth-range,” Proc. SPIE6429(64291G), 64291G (2007). [CrossRef]
  41. H. Kakuma, K. Ohbayashi, and Y. Arakawa, “Optical imaging of hard and soft dental tissues using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm,” J. Biomed. Opt.13(1), 014012 (2008). [CrossRef] [PubMed]
  42. H. Kakuma, D. Choi, H. Furukawa, H. Hiro-oka, and K. Ohbayashi, “24 mm depth range discretely swept optical frequency domain imaging in dentistry,” Proc. SPIE7162(717208), 717208 (2009).
  43. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008). [CrossRef] [PubMed]
  44. D. Choi, R. Yoshimura, H. Hiro-oka, H. Furukawa, A. Goto, N. Satoh, A. Igarashi, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Discretly swept optical coherence tomography system using super-structure grating distributed Bragg reflector lasers at 1561-1639 nm,” Proc. SPIE8213(82132F), 82132F (2012). [CrossRef]
  45. G. Sarlet, G. Morthier, and R. Baets, “Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing,” J. Lightwave Technol.18(8), 1128–1138 (2000). [CrossRef]
  46. F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, and Y. Yoshikuni, “Broad range wavelength switching in superstructure grating distributed Bragg reflector lasers,” Electron. Lett.29(12), 1091–1092 (1993). [CrossRef]
  47. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 988–999 (2000). [CrossRef]
  48. S. H. Yun, G. T. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express11(26), 3598–3604 (2003). [CrossRef] [PubMed]
  49. G. Häusler and M. W. Lindner, “Coherence radar” and “Spectral radar”-New tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef] [PubMed]
  50. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  51. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).
  52. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express16(24), 19712–19723 (2008). [CrossRef] [PubMed]
  53. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express3(2), 282–294 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited