OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 2989–3006

Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media

Serge Grabtchak, Kristen B. Callaghan, and William M. Whelan  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 2989-3006 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze a role of a localized inclusion as a probe for spatial distributions of migrating photons in turbid media. We present new experimental data and two-dimensional analysis of radiance detection of a localized absorptive inclusion formed by gold nanoparticles in Intralipid-1% when the target is translated along the line connecting the light source and detector. Data are analyzed using the novel analytical expression for the relative angular photon distribution function for radiance developed by extending the perturbation approach for fluence. Obtained photon maps allow predicting conditions for detectability of inclusions for which proximity to the detector is essential.

© 2013 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(290.4210) Scattering : Multiple scattering

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: October 11, 2013
Revised Manuscript: November 19, 2013
Manuscript Accepted: November 21, 2013
Published: November 25, 2013

Serge Grabtchak, Kristen B. Callaghan, and William M. Whelan, "Tagging photons with gold nanoparticles as localized absorbers in optical measurements in turbid media," Biomed. Opt. Express 4, 2989-3006 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kitai, T. Inomoto, M. Miwa, and T. Shikayama, “Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer,” Breast Cancer12(3), 211–215 (2005). [CrossRef] [PubMed]
  2. B. E. Schaafsma, J. S. D. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol.104(3), 323–332 (2011). [CrossRef] [PubMed]
  3. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev.18(1), 37–47 (2010). [CrossRef]
  4. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009). [CrossRef] [PubMed]
  5. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev.41(7), 2740–2779 (2012). [CrossRef] [PubMed]
  6. R. Wilson, “The use of gold nanoparticles in diagnostics and detection,” Chem. Soc. Rev.37(9), 2028–2045 (2008). [CrossRef] [PubMed]
  7. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004). [CrossRef] [PubMed]
  8. C. J. Wen, L. W. Zhang, S. A. Al-Suwayeh, T. C. Yen, and J. Y. Fang, “Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging,” Int. J. Nanomedicine7, 1599–1611 (2012). [PubMed]
  9. E. Hutter and D. Maysinger, “Gold Nanoparticles and Quantum Dots for Bioimaging,” Microsc. Res. Tech.74(7), 592–604 (2011). [CrossRef] [PubMed]
  10. S. Fantini, M. A. Franceschinifantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain mutlichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34(1), 32–42 (1995). [CrossRef]
  11. A. Pellicer and M. C. Bravo, “Near-infrared spectroscopy: A methodology-focused review,” Semin. Fetal Neonatal Med.16(1), 42–49 (2011). [CrossRef] [PubMed]
  12. M. Ono, Y. Kashio, M. Schweiger, H. Dehghani, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000). [CrossRef]
  13. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt.Soc. Am. A.17, 1659–1670 (2000).
  14. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005). [CrossRef] [PubMed]
  15. K. Bensalah, A. Tuncel, D. Peshwani, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate renal tumor from normal parenchyma,” J. Urol.179(5), 2010–2013 (2008). [CrossRef] [PubMed]
  16. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: A signal-to-noise analysis,” Appl. Opt.36(1), 75–92 (1997). [CrossRef] [PubMed]
  17. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000). [CrossRef] [PubMed]
  18. M. G. Giacomelli and A. Wax, “Imaging beyond the ballistic limit in coherence imaging using multiply scattered light,” Opt. Express19(5), 4268–4279 (2011). [CrossRef] [PubMed]
  19. A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J. M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011). [CrossRef] [PubMed]
  20. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005). [CrossRef] [PubMed]
  21. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012). [CrossRef]
  22. D. Piao, H. Xie, W. L. Zhang, J. S. Krasinski, G. L. Zhang, H. Dehghani, and B. W. Pogue, “Endoscopic, rapid near-infrared optical tomography,” Opt. Lett.31(19), 2876–2878 (2006). [CrossRef] [PubMed]
  23. S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt.37(10), 1935–1944 (1998). [CrossRef] [PubMed]
  24. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt.44(10), 1889–1897 (2005). [CrossRef] [PubMed]
  25. M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005). [CrossRef]
  26. S. R. Arridge, “Methods in diffuse optical imaging,” Philos Trans A Math Phys Eng Sci369(1955), 4558–4576 (2011). [CrossRef] [PubMed]
  27. S. C. Feng, F. A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt.34(19), 3826–3837 (1995). [CrossRef] [PubMed]
  28. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. Paasschens, J. B. Melissen, and N. A. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt.36(1), 180–213 (1997). [CrossRef] [PubMed]
  29. O. Barajas, A. M. Ballangrud, G. G. Miller, R. B. Moore, and J. Tulip, “Monte Carlo modelling of angular radiance in tissue phantoms and human prostate: PDT light dosimetry,” Phys. Med. Biol.42(9), 1675–1687 (1997). [CrossRef] [PubMed]
  30. S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011). [CrossRef] [PubMed]
  31. A. M. Ballangrud, P. J. Wilson, K. Brown, G. G. Miller, R. B. Moore, M. S. McPhee, and J. Tulip, “Anisotropy of radiance in tissue phantoms and Dunning R3327 rat tumors: Radiance measurements with flat cleaved fiber probes,” Lasers Surg. Med.19(4), 471–479 (1996). [CrossRef] [PubMed]
  32. D. Dickey, O. Barajas, K. Brown, J. Tulip, and R. B. Moore, “Radiance modelling using the P3 approximation,” Phys. Med. Biol.43(12), 3559–3570 (1998). [CrossRef] [PubMed]
  33. D. J. Dickey, R. B. Moore, D. C. Rayner, and J. Tulip, “Light dosimetry using the P3 approximation,” Phys. Med. Biol.46(9), 2359–2370 (2001). [CrossRef] [PubMed]
  34. L. C. L. Chin, A. E. Worthington, W. M. Whelan, and I. A. Vitkin, “Determination of the optical properties of turbid media using relative interstitial radiance measurements: Monte Carlo study, experimental validation, and sensitivity analysis,” J. Biomed. Opt.12(6), 064027 (2007). [CrossRef] [PubMed]
  35. L. C. L. Chin, B. Lloyd, W. M. Whelan, and I. A. Vitkin, “Interstitial point radiance spectroscopy of turbid media,” J. Appl. Phys.105(10), 102025 (2009). [CrossRef]
  36. S. Grabtchak, T. J. Palmer, and W. Whelan, “Radiance spectroscopy tool box for characterizing Au nanoparticles in tissue mimicking phantoms as applied to prostate,” J. Cancer Sci. Ther.S1–008 (2011).
  37. S. Grabtchak, T. J. Palmer, I. A. Vitkin, and W. M. Whelan, “Radiance detection of non-scattering inclusions in turbid media,” Biomed. Opt. Express3(11), 3001–3011 (2012). [CrossRef] [PubMed]
  38. S. Grabtchak and W. M. Whelan, “Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements,” Biomed. Opt. Express3(10), 2371–2380 (2012). [CrossRef] [PubMed]
  39. S. Grabtchak, E. Tonkopi, and W. M. Whelan, “Optical detection of gold nanoparticles in a prostate-shaped porcine phantom,” J. Biomed. Opt.18(7), 077005 (2013). [CrossRef] [PubMed]
  40. A. Liemert and A. Kienle, “Analytical Green’s function of the radiative transfer radiance for the infinite medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(3), 036605 (2011). [CrossRef] [PubMed]
  41. L. C. L. Chin, W. M. Whelan, and I. A. Vitkin, “Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification,” Appl. Opt.45(9), 2101–2114 (2006). [CrossRef] [PubMed]
  42. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991). [CrossRef]
  43. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue II. Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci.6(4), 379–390 (1991). [CrossRef]
  44. W. M. Star, “Light dosimetry in vivo,” Phys. Med. Biol.42(5), 763–787 (1997). [CrossRef] [PubMed]
  45. A. M. Siegel, J. J. A. Marota, and D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express4(8), 287–298 (1999). [CrossRef] [PubMed]
  46. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol.50(10), 2291–2311 (2005). [CrossRef] [PubMed]
  47. T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J. Photochem. Photobiol. B79(3), 231–241 (2005). [CrossRef] [PubMed]
  48. H. P. Xu and M. S. Patterson, “Determination of the optical properties of tissue-simulating phantoms from interstitial frequency domain measurements of relative fluence and phase difference,” Opt. Express14(14), 6485–6501 (2006). [CrossRef] [PubMed]
  49. K. K. H. Wang and T. C. Zhu, “Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography,” Opt. Express17(14), 11665–11672 (2009). [CrossRef] [PubMed]
  50. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  51. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. U.S.A.90(8), 3423–3427 (1993). [CrossRef] [PubMed]
  52. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt.32(4), 607–616 (1993). [CrossRef] [PubMed]
  53. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39(34), 6498–6507 (2000). [CrossRef] [PubMed]
  54. Y. Yamada, “Fundamental studies of photon migration in biological tissues and their application to optical tomography,” Opt. Rev.7(5), 366–374 (2000). [CrossRef]
  55. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.28(18), 1701–1703 (2003). [CrossRef] [PubMed]
  56. B. W. Pogue, S. C. Davis, X. M. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11(3), 033001 (2006). [CrossRef] [PubMed]
  57. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010). [CrossRef]
  58. S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012). [CrossRef] [PubMed]
  59. F. Martelli, M. Bassani, L. Alianelli, L. Zangheri, and G. Zaccanti, “Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation,” Phys. Med. Biol.45(5), 1359–1373 (2000). [CrossRef] [PubMed]
  60. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press New York, 1978).
  61. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,” Chem. Rev.107(11), 4797–4862 (2007). [CrossRef] [PubMed]
  62. S. Carraresi, T. S. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt.40(25), 4622–4632 (2001). [CrossRef] [PubMed]
  63. A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt.48(10), D62–D73 (2009). [CrossRef] [PubMed]
  64. F. Martelli, A. Pifferi, D. Contini, L. Spinelli, A. Torricelli, H. Wabnitz, R. Macdonald, A. Sassaroli, and G. Zaccanti, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 1: Basic concepts,” J. Biomed. Opt.18(6), 066014 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited