OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 12 — Dec. 1, 2013
  • pp: 3030–3041

Optical clearing in photoacoustic flow cytometry

Yulian A. Menyaev, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Mazen A. Juratli, Ekaterina I. Galanzha, Valery V. Tuchin, and Vladimir P. Zharov  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 12, pp. 3030-3041 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins.

© 2013 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(330.6130) Vision, color, and visual optics : Spatial resolution
(110.5125) Imaging systems : Photoacoustics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Noninvasive Optical Diagnostics

Original Manuscript: September 30, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 25, 2013
Published: November 27, 2013

Yulian A. Menyaev, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Mazen A. Juratli, Ekaterina I. Galanzha, Valery V. Tuchin, and Vladimir P. Zharov, "Optical clearing in photoacoustic flow cytometry," Biomed. Opt. Express 4, 3030-3041 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods57(3), 280–296 (2012). [CrossRef] [PubMed]
  2. D. A. Nedosekin, M. Sarimollaoglu, J.-H. Ye, E. I. Galanzha, and V. P. Zharov, “In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers,” Cytometry A79(10), 825–833 (2011). [CrossRef] [PubMed]
  3. M. Sarimollaoglu, D. A. Nedosekin, Y. A. Menyaev, M. A. Juratli, and V. P. Zharov, “Nonlinear photoacoustic signal amplification from single targets in absorption background,” Photoacoustics. doi 10.1016/j.pacs.2013.11.002.. (2013).
  4. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res.69(20), 7926–7934 (2009). [CrossRef] [PubMed]
  5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, PM166, Bellingham, WA, 2007).
  6. V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, PM154, Bellingham, WA, 2006).
  7. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev.7(5), 732–757 (2013). [CrossRef]
  8. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med.24(2), 133–141 (1999). [CrossRef] [PubMed]
  9. C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med.40(10), 688–694 (2008). [CrossRef] [PubMed]
  10. M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics3(12), 752–758 (2010). [CrossRef] [PubMed]
  11. I. Yu. Yanina, N. A. Trunina, and V. V. Tuchin, “Photoinduced cell morphology alterations quantified within adipose tissues by spectral optical coherence tomography,” J. Biomed. Opt.18(11), 111407 (2013). [CrossRef] [PubMed]
  12. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett.31(24), 3623–3625 (2006). [CrossRef] [PubMed]
  13. E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol.13(2), 192–218 (2007). [PubMed]
  14. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J. W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt.12(5), 051503 (2007). [CrossRef] [PubMed]
  15. V. V. Tuchin, “A clear vision for laser diagnostics (review),” IEEE J. Sel. Top. Quantum Electron.13(6), 1621–1628 (2007). [CrossRef]
  16. E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles,” J. Biophotonics2(8-9), 528–539 (2009). [CrossRef] [PubMed]
  17. Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett.38(14), 2592–2595 (2013). [CrossRef] [PubMed]
  18. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Tissue optical immersion clearing,” Expert Rev. Med. Devices7(6), 825–842 (2010). [CrossRef] [PubMed]
  19. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, “In vivo skin optical clearing by glycerol solutions: mechanism,” J. Biophotonics3(1-2), 44–52 (2010). [CrossRef] [PubMed]
  20. L. M. Oliveira, M. I. Carvalho, E. M. Nogueira, and V. V. Tuchin, “The characteristic time of glucose diffusion measured for muscle tissue at optical clearing,” Laser Phys.23(7), 075606 (2013). [CrossRef]
  21. M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelength of 1064 and 532 nm in pig blood and Intralipid,” J. Phys. D Appl. Phys.38(15), 2654–2661 (2005). [CrossRef]
  22. R. Myllylä, Z. Zhao, and M. Kinnunen, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, V.V. Tuchin, ed. (CRC Press, Taylor & Francis Group, London, 419–455, 2009).
  23. H. Kang, T. Son, J. Yoon, K. Kwon, J. S. Nelson, and B. Jung, “Evaluation of laser beam profile in soft tissue due to compression, glycerol, and micro-needling,” Lasers Surg. Med.40(8), 570–575 (2008). [CrossRef] [PubMed]
  24. J. Jiang, M. Boese, P. Turner, and R. K. Wang, “Penetration kinetics of dimethyl sulphoxide and glycerol in dynamic optical clearing of porcine skin tissue in vitro studied by Fourier transform infrared spectroscopic imaging,” J. Biomed. Opt.13(2), 021105 (2008). [CrossRef] [PubMed]
  25. A. K. Bui, R. A. McClure, J. Chang, C. Stoianovici, J. Hirshburg, A. T. Yeh, and B. Choi, “Revisiting optical clearing with dimethyl sulfoxide (DMSO),” Lasers Surg. Med.41(2), 142–148 (2009). [CrossRef] [PubMed]
  26. M. Muir, “DMSO: Many Uses, Much Controversy,” http://www.dmso.org/articles/information/muir.htm [CrossRef]
  27. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Effect of ethanol on the transport of methylene blue through stratum corneum,” Med. Laser Appl.23(1), 31–38 (2008). [CrossRef]
  28. T. Kurihara-Bergstrom, K. Knutson, L. J. DeNoble, and C. Y. Goates, “Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin,” Pharm. Res.7(7), 762–766 (1990). [CrossRef] [PubMed]
  29. A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, “Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin,” Lasers Surg. Med.43(8), 814–823 (2011). [CrossRef] [PubMed]
  30. A. N. B. Kauvar, “Successful treatment of melasma using a combination of microdermabrasion and Q-switched Nd:YAG lasers,” Lasers Surg. Med.44(2), 117–124 (2012). [CrossRef] [PubMed]
  31. S. J. Lee, M. J. Choi, Z. Zheng, W. S. Chung, Y. K. Kim, and S. B. Cho, “Combination of 595-nm pulsed dye laser, long-pulsed 755-nm alexandrite laser, and microdermabrasion treatment for keratosis pilaris: retrospective analysis of 26 Korean patients,” J. Cosmet. Laser Ther.15(3), 150–154 (2013). [CrossRef] [PubMed]
  32. R. A. Weiss, E. V. Ross, E. A. Tanghetti, D. B. Vasily, J. J. Childs, M. Z. Smirnov, and G. B. Altshuler, “Characterization of an optimized light source and comparison to pulsed dye laser for superficial and deep vessel clearance,” Lasers Surg. Med.43(2), 92–98 (2011). [CrossRef] [PubMed]
  33. E. F. Bernstein, “Laser treatment of tattoos,” Clin. Dermatol.24(1), 43–55 (2006). [CrossRef] [PubMed]
  34. W. R. Lee, S. C. Shen, K.-H. Wang, C. H. Hu, and J. Y. Fang, “Lasers and microdermabrasion enhance and control topical delivery of vitamin C,” J. Invest. Dermatol.121(5), 1118–1125 (2003). [CrossRef] [PubMed]
  35. W. R. Lee, R. Y. Tsai, C. L. Fang, C. J. Liu, C. H. Hu, and J. Y. Fang, “Microdermabrasion as a novel tool to enhance drug delivery via the skin: an animal study,” Dermatol. Surg.32(8), 1013–1022 (2006). [CrossRef] [PubMed]
  36. C. Vavouli, A. Katsambas, S. Gregoriou, A. Teodor, C. Salavastru, A. Alexandru, and G. Kontochristopoulos, “Chemical peeling with trichloroacetic acid and lactic acid for infraorbital dark circles,” J. Cosmet. Dermatol.12(3), 204–209 (2013). [CrossRef] [PubMed]
  37. J. A. Brauer, U. Patel, and E. K. Hale, “Laser skin resurfacing, chemical peels, and other cutaneous treatments of the brow and upper lid,” Clin. Plast. Surg.40(1), 91–99 (2013). [CrossRef] [PubMed]
  38. H. K. Kar, L. Gupta, and A. Chauhan, “A comparative study on efficacy of high and low fluence Q-switched Nd:YAG laser and glycolic acid peel in melasma,” Indian J. Dermatol. Venereol. Leprol.78(2), 165–171 (2012). [PubMed]
  39. R. H. Kim and A. W. Armstrong, “Current state of acne treatment: highlighting lasers, photodynamic therapy, and chemical peels,” Dermatol. Online J.17(3), 2 (2011), http://escholarship.org/uc/item/0t40h9px . [PubMed]
  40. T. M. Katz, A. S. Glaich, L. H. Goldberg, and P. M. Friedman, “595-nm long pulsed dye laser and 1450-nm diode laser in combination with intralesional triamcinolone/5-fluorouracil for hypertrophic scarring following a phenol peel,” J. Am. Acad. Dermatol.62(6), 1045–1049 (2010). [CrossRef] [PubMed]
  41. H. Zhong, Z. Guo, H. Wei, L. Guo, C. Wang, Y. He, H. Xiong, and S. Liu, “Synergistic effect of ultrasound and Thiazone-PEG 400 on human skin optical clearing in vivo,” Photochem. Photobiol.86(3), 732–737 (2010). [CrossRef] [PubMed]
  42. J. Dudelzak, M. Hussain, R. G. Phelps, G. J. Gottlieb, and D. J. Goldberg, “Evaluation of histologic and electron microscopic changes after novel treatment using combined microdermabrasion and ultrasound-induced phonophoresis of human skin,” J. Cosmet. Laser Ther.10(4), 187–192 (2008). [CrossRef] [PubMed]
  43. X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt.17(6), 066022 (2012). [CrossRef] [PubMed]
  44. E. D. Jansen, P. M. Pickett, M. A. Mackanos, and J. Virostko, “Effect of optical tissue clearing on spatial resolution and sensitivity of bioluminescence imaging,” J. Biomed. Opt.11(4), 041119 (2006). [CrossRef] [PubMed]
  45. J. Y. Fang, W. R. Lee, S. C. Shen, Y. P. Fang, and C. H. Hu, “Enhancement of topical 5-aminolaevulinic acid delivery by erbium:YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation,” Br. J. Dermatol.151(1), 132–140 (2004). [CrossRef] [PubMed]
  46. M. H. Khan, B. Choi, S. Chess, K. M Kelly, J. McCullough, and J. S. Nelson, “Optical clearing of in vivo human skin: Implications for light-based diagnostic imaging and therapeutics,” Lasers Surg. Med.34(2), 83–85 (2004). [CrossRef] [PubMed]
  47. V. P. Zharov, Y. A. Menyaev, R. K. Kabisov, S. V. Al’kov, A. V. Nesterov, and G. V. Savrasov, “Design and application of low-frequency ultrasound and its combination with laser radiation in surgery and therapy,” Crit. Rev. Biomed. Eng.29(3), 502–519 (2001). [CrossRef] [PubMed]
  48. Y. A. Menyaev and V. P. Zharov, “Combination of photodynamic and ultrasonic therapy for treatment of infected wounds in animal model,” Proc. SPIE6087, 30–39 (2006). [CrossRef]
  49. J. Yoon, T. Son, E. H. Choi, B. Choi, J. S. Nelson, and B. Jung, “Enhancement of optical skin clearing efficacy using a microneedle roller,” J. Biomed. Opt.13(2), 021103 (2008). [CrossRef] [PubMed]
  50. J. Yoon, D. Park, T. Son, J. Seo, and B. Jung, “Enhancement of transdermal delivery of glycerol by micro-needling method combined with sonophoresis,” Proc. SPIE7161, 716109 (2009). [CrossRef]
  51. J. Yoon, D. Park, T. Son, J. Seo, J. S. Nelson, and B. Jung, “A physical method to enhance transdermal delivery of a tissue optical clearing agent: combination of microneedling and sonophoresis,” Lasers Surg. Med.42(5), 412–417 (2010). [CrossRef] [PubMed]
  52. D. Park, H. Park, J. Seo, and S. Lee, “Sonophoresis in transdermal drug deliverys,” Ultrasonics54(1), 56–65 (2014). [CrossRef] [PubMed]
  53. C. Y. Lai, B. Z. Fite, and K. W. Ferrara, “Ultrasonic enhancement of drug penetration in solid tumors,” Front Oncol3, 204 (2013). [CrossRef] [PubMed]
  54. A. Ibrahim, R. Meyrueix, G. Pouliquen, Y. P. Chan, and H. Cottet, “Size and charge characterization of polymeric drug delivery systems by Taylor dispersion analysis and capillary electrophoresis,” Anal. Bioanal. Chem.405(16), 5369–5379 (2013). [CrossRef] [PubMed]
  55. K. Ariga, K. Kawakami, and J. P. Hill, “Emerging pressure-release materials for drug delivery,” Expert Opin. Drug. Deliv, (2013). http://informahealthcare.com/doi/abs/10.1517/17425247.2013.819340
  56. H. Sakurai, Y. Takahashi, and Y. Machida, “Influence of low-frequency massage device on transdermal absorption of ionic materials,” Int. J. Pharm.305(1-2), 112–121 (2005). [CrossRef] [PubMed]
  57. V. V. Tuchin, G. B. Altshuler, A. A. Gavrilova, A. B. Pravdin, D. Tabatadze, J. Childs, and I. V. Yaroslavsky, “Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability,” Lasers Surg. Med.38(9), 824–836 (2006). [CrossRef] [PubMed]
  58. E. A. Genina, A. N. Bashkatov, A. A. Korobko, E. A. Zubkova, V. V. Tuchin, I. V. Yaroslavsky, and G. B. Altshuler, “Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin,” J. Biomed. Opt.13(2), 021102 (2008). [CrossRef] [PubMed]
  59. E. A. Genina, A. N. Bashkatov, L. E. Dolotov, G. N. Maslyakova, V. I. Kochubey, I. V. Yaroslavsky, G. B. Altshuler, and V. V. Tuchin, “Transcutaneous delivery of micro- and nanoparticles with laser microporation,” J. Biomed. Opt.18(11), 111406 (2013). [CrossRef] [PubMed]
  60. C. Liu, Z. Zhi, V. V. Tuchin, Q. Luo, and D. Zhu, “Enhancement of skin optical clearing efficacy using photo-irradiation,” Lasers Surg. Med.42(2), 132–140 (2010). [CrossRef] [PubMed]
  61. Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett.38(20), 4236–4239 (2013). [CrossRef] [PubMed]
  62. ANSI_Z136.1. American National Standard for the Safe Use of Lasers (American National Standards Institute, Washington DC, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited