OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 193–205

Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures

A. Urich, R. R. J. Maier, Fei Yu, J. C. Knight, D. P. Hand, and J. D. Shephard  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 2, pp. 193-205 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the delivery of high energy microsecond pulses through a hollow-core negative-curvature fiber at 2.94 µm. The energy densities delivered far exceed those required for biological tissue manipulation and are of the order of 2300 J/cm2. Tissue ablation was demonstrated on hard and soft tissue in dry and aqueous conditions with no detrimental effects to the fiber or catastrophic damage to the end facets. The energy is guided in a well confined single mode allowing for a small and controllable focused spot delivered flexibly to the point of operation. Hence, a mechanically and chemically robust alternative to the existing Er:YAG delivery systems is proposed which paves the way for new routes for minimally invasive surgical laser procedures.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Optical Therapies and Photomodificaton

Original Manuscript: September 20, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 19, 2012
Published: December 21, 2012

A. Urich, R. R. J. Maier, Fei Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, "Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures," Biomed. Opt. Express 4, 193-205 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Robertson and D. Williams, “Lambert absorption coefficients of water in the infrared,” J. Opt. Soc. Am.61(10), 1316–1320 (1971). [CrossRef]
  2. S. Stübinger, B. von Rechenberg, H. F. Zeilhofer, R. Sader, and C. Landes, “Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques,” Lasers Surg. Med.39(7), 583–588 (2007). [CrossRef] [PubMed]
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim.5(12), 873–883 (2002). [CrossRef]
  4. N. J. Scott, R. A. Barton, A. L. Casperson, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Mid-IR germanium oxide fibers for contact erbium laser tissue ablation in endoscopic surgery,” IEEE J. Sel. Top. Quantum Electron.13(6), 1709–1714 (2007). [CrossRef]
  5. N. M. Fried, Y. B. Yang, C. A. Chaney, and D. Fried, “Transmission of Q-switched erbium:YSGG (λ=2.79 µm) and erbium:YAG (λ=2.94 µm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies,” Lasers Med. Sci.19(3), 155–160 (2004). [CrossRef] [PubMed]
  6. A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” Proc. SPIE2677, 55–63 (1996). [CrossRef]
  7. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integrated Opt.19(3), 211–227 (2000). [CrossRef]
  8. B. F. Bowden and J. A. Harrington, “Fabrication and characterization of chalcogenide glass for hollow Bragg fibers,” Appl. Opt.48(16), 3050–3054 (2009). [CrossRef] [PubMed]
  9. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996). [CrossRef]
  10. J. D. Shephard, W. N. Macpherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express13(18), 7139–7144 (2005). [CrossRef] [PubMed]
  11. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. Russell, and B. J. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express12(4), 717–723 (2004). [CrossRef] [PubMed]
  12. J. D. Shephard, P. J. Roberts, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Measuring beam quality of hollow core photonic crystal fibers,” J. Lightwave Technol.24(10), 3761–3769 (2006). [CrossRef]
  13. J. D. Shephard, F. Couny, P. S. Russell, J. D. C. Jones, J. C. Knight, and D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications,” Appl. Opt.44(21), 4582–4588 (2005). [CrossRef] [PubMed]
  14. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012). [CrossRef] [PubMed]
  15. A. Urich, T. Delmonte, R. R. J. Maier, D. P. Hand, and J. D. Shephard, “Towards implementation of hollow core fibres for surgical applications,” Proc. SPIE7894, 78940W (2011). [CrossRef]
  16. M. C. Pierce, M. R. Dickinson, and H. Devlin, “Selective photothermal ablation of tissue with a fibre delivered Er: YAG laser,” Proc. SPIE3601, 362–368 (1999). [CrossRef]
  17. U. Hohenleutner, S. Hohenleutner, W. Bäumler, and M. Landthaler, “Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones,” Lasers Surg. Med.20(3), 242–247 (1997). [CrossRef] [PubMed]
  18. T. Wesendahl, P. Janknecht, B. Ott, and M. Frenz, “Erbium: YAG laser ablation of retinal tissue under perfluorodecaline: determination of laser-tissue interaction in pig eyes,” Invest. Ophthalmol. Vis. Sci.41(2), 505–512 (2000). [PubMed]
  19. Y. Nishimoto, M. Otsuki, M. Yamauti, T. Eguchi, Y. Sato, R. M. Foxton, and J. Tagami, “Effect of pulse duration of Er: YAG laser on dentin ablation,” Dent. Mater. J.27(3), 433–439 (2008). [CrossRef] [PubMed]
  20. J. P. Parry, T. J. Stephens, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser,” Appl. Opt.45(36), 9160–9167 (2006). [CrossRef] [PubMed]
  21. M. Contente, F. de Lima, R. Galo, J. Pécora, L. Bachmann, R. Palma-Dibb, and M. Borsatto, “Temperature rise during Er:YAG cavity preparation of primary enamel,” Lasers Med. Sci. (preprint) http://www.springerlink.com/index/Q24548Q541Q6017U.pdf .
  22. J. T. Walsh and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med.9(4), 327–337 (1989). [CrossRef] [PubMed]
  23. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  24. Z. Huang, F. Fu, Z. Zhong, L. Zhang, R. Xu, and X. Zhao, “Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice?” Urology80(4), 800–804 (2012). [CrossRef] [PubMed]
  25. J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med.38(6), 580–587 (2006). [CrossRef] [PubMed]
  26. D. G. Kotsifaki and A. A. Serafetinides, “Mid-infrared radiation transmission through fluoride glass multimode optical fibers,” Opt. Laser Technol.43(8), 1448–1452 (2011). [CrossRef]
  27. D. G. Kotsifaki and A. A. Serafetinides, “Pulsed infrared radiation transmission through hollow silica waveguides,” Opt. Laser Technol.41(4), 365–373 (2009). [CrossRef]
  28. J. Albert and G. L. Yip, “Insertion loss reduction between single-mode fibers and diffused channel waveguides,” Appl. Opt.27(23), 4837–4843 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3391 KB)     
» Media 2: MOV (1857 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited