OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 230–240

In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography

Simon S. Gao, Patrick D. Raphael, Rosalie Wang, Jesung Park, Anping Xia, Brian E. Applegate, and John S. Oghalai  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 2, pp. 230-240 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1590 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sound transduction within the auditory portion of the inner ear, the cochlea, is a complex nonlinear process. The study of cochlear mechanics in large rodents has provided important insights into cochlear function. However, technological and experimental limitations have restricted studies in mice due to their smaller cochlea. These challenges are important to overcome because of the wide variety of transgenic mouse strains with hearing loss mutations that are available for study. To accomplish this goal, we used spectral domain optical coherence tomography to visualize and measure sound-induced vibrations of intracochlear tissues. We present, to our knowledge, the first vibration measurements from the apex of an unopened mouse cochlea.

© 2013 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4940) Medical optics and biotechnology : Otolaryngology

ToC Category:

Original Manuscript: November 15, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 14, 2013
Published: January 15, 2013

Simon S. Gao, Patrick D. Raphael, Rosalie Wang, Jesung Park, Anping Xia, Brian E. Applegate, and John S. Oghalai, "In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography," Biomed. Opt. Express 4, 230-240 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev.81(3), 1305–1352 (2001). [PubMed]
  2. P. Dallos, “Cochlear amplification, outer hair cells and prestin,” Curr. Opin. Neurobiol.18(4), 370–376 (2008). [CrossRef] [PubMed]
  3. E. H. Overstreet, A. N. Temchin, and M. A. Ruggero, “Basilar membrane vibrations near the round window of the gerbil cochlea,” J. Assoc. Res. Otolaryngol.3(3), 351–361 (2002). [CrossRef] [PubMed]
  4. A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am.99(3), 1556–1565 (1996). [CrossRef] [PubMed]
  5. N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol.509(1), 277–288 (1998). [CrossRef] [PubMed]
  6. I. J. Russell and K. E. Nilsen, “The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane,” Proc. Natl. Acad. Sci. U.S.A.94(6), 2660–2664 (1997). [CrossRef] [PubMed]
  7. M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am.101(4), 2151–2163 (1997). [CrossRef] [PubMed]
  8. S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl.108(s467), 69–75 (1989). [CrossRef] [PubMed]
  9. D. Duman and M. Tekin, “Autosomal recessive nonsyndromic deafness genes: a review,” Front. Biosci.17(7), 2213–2236 (2012). [CrossRef] [PubMed]
  10. A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res.293(1-2), 3–11 (2012). [CrossRef] [PubMed]
  11. M. M. Mellado Lagarde, M. Drexl, A. N. Lukashkin, J. Zuo, and I. J. Russell, “Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation,” Curr. Biol.18(3), 200–202 (2008). [CrossRef] [PubMed]
  12. A. N. Lukashkin, M. E. Bashtanov, and I. J. Russell, “A self-mixing laser-diode interferometer for measuring basilar membrane vibrations without opening the cochlea,” J. Neurosci. Methods148(2), 122–129 (2005). [CrossRef] [PubMed]
  13. S. S. Gao, A. Xia, T. Yuan, P. D. Raphael, R. L. Shelton, B. E. Applegate, and J. S. Oghalai, “Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography,” Opt. Express19(16), 15415–15428 (2011). [CrossRef] [PubMed]
  14. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt.15(3), 036024 (2010). [CrossRef] [PubMed]
  15. S. S. Hong and D. M. Freeman, “Doppler optical coherence microscopy for studies of cochlear mechanics,” J. Biomed. Opt.11(5), 054014 (2006). [CrossRef] [PubMed]
  16. A. Sepehr, H. R. Djalilian, J. E. Chang, Z. Chen, and B. J. Wong, “Optical coherence tomography of the cochlea in the porcine model,” Laryngoscope118(8), 1449–1451 (2008). [CrossRef] [PubMed]
  17. F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci.14(6), 770–774 (2011). [CrossRef] [PubMed]
  18. D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS ONE7(4), e32757 (2012). [CrossRef] [PubMed]
  19. B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett.36(23), 4716–4718 (2011). [CrossRef] [PubMed]
  20. A. Xia, S. S. Gao, T. Yuan, A. Osborn, A. Bress, M. Pfister, S. M. Maricich, F. A. Pereira, and J. S. Oghalai, “Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation,” Dis. Model. Mech.3(3-4), 209–223 (2010). [CrossRef] [PubMed]
  21. A. Xia, A. M. Visosky, J. H. Cho, M. J. Tsai, F. A. Pereira, and J. S. Oghalai, “Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse,” J. Assoc. Res. Otolaryngol.8(4), 447–463 (2007). [CrossRef] [PubMed]
  22. C. C. Liu, S. S. Gao, T. Yuan, C. Steele, S. Puria, and J. S. Oghalai, “Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane,” J. Assoc. Res. Otolaryngol.12(5), 577–594 (2011). [CrossRef] [PubMed]
  23. M. Müller, K. von Hünerbein, S. Hoidis, and J. W. T. Smolders, “A physiological place-frequency map of the cochlea in the CBA/J mouse,” Hear. Res.202(1-2), 63–73 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited