OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 260–270

High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber

Ioannis N. Papadopoulos, Salma Farahi, Christophe Moser, and Demetri Psaltis  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 2, pp. 260-270 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2118 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate an ultra-thin rigid endoscope (450 μm diameter) based on a passive multimode optical fiber. We use digital phase conjugation to overcome the modal scrambling of the fiber to tightly focus and scan the laser light at its distal end. By exploiting the maximum number of modes available, sub-micron resolution, high quality fluorescence images of neuronal cells were acquired. The imaging system is evaluated in terms of fluorescence collection efficiency, resolution and field of view. The small diameter of the proposed endoscope, along with its high quality images offer an opportunity for minimally invasive medical endoscopic imaging and diagnosis based on cellular phenotype via direct tissue penetration.

© 2013 OSA

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(110.2350) Imaging systems : Fiber optics imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.7050) Medical optics and biotechnology : Turbid media
(090.1995) Holography : Digital holography

ToC Category:
Endoscopes, Catheters and Micro-Optics

Original Manuscript: November 12, 2012
Revised Manuscript: January 8, 2013
Manuscript Accepted: January 8, 2013
Published: January 17, 2013

Virtual Issues
March 20, 2013 Spotlight on Optics

Ioannis N. Papadopoulos, Salma Farahi, Christophe Moser, and Demetri Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Express 4, 260-270 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung, and M. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005). [CrossRef] [PubMed]
  2. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol.87, 737–745 (2002). [CrossRef] [PubMed]
  3. J. Jung and M. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28, 902–904 (2003). [CrossRef] [PubMed]
  4. J. Jung, A. Mehta, E. Aksay, R. Stepnoski, and M. Schnitzer, “In vivo mammalian brain imaging using one-and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92, 3121–3133 (2004). [CrossRef] [PubMed]
  5. M. J. Levene, D. Dombeck, K. Kasischke, R. Molloy, and W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol.91, 1908–1912 (2004). [CrossRef]
  6. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17, 0211061–0211064 (2012). [CrossRef]
  7. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett.18, 565–567 (1993). [CrossRef] [PubMed]
  8. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29, 2521–2523 (2004). [CrossRef] [PubMed]
  9. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31, 1076–1078 (2006). [CrossRef] [PubMed]
  10. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16, 5556 (2008). [CrossRef] [PubMed]
  11. D. Rivera, C. Brown, D. Ouzounov, I. Pavlova, D. Kobat, W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. USA108, 17598–17603 (2011). [CrossRef] [PubMed]
  12. R. Rokitski and S. Fainman, “Propagation of ultrashort pulses in multimode fiber in space and time,” Opt. Express11, 1497–1502 (2003). [CrossRef] [PubMed]
  13. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express19, 247–254 (2011). [CrossRef] [PubMed]
  14. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express19, 18871–18884 (2011). [CrossRef] [PubMed]
  15. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20, 10583 (2012). [CrossRef] [PubMed]
  16. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip12, 635–639 (2012). [CrossRef]
  17. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012). [CrossRef]
  18. Y. Choi, C. Yoon, M. Kim, T. Yang, C. Fang-Yen, R. Dasari, K. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109, 203901 (2012). [CrossRef] [PubMed]
  19. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am.56, 523–523 (1966). [CrossRef]
  20. H. Kogelnik and K. S. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am.58, 273–274 (1968). [CrossRef]
  21. G. S. Agarwal, A. T. Friberg, and E. Wolf, “Scattering theory of distortion correction by phase conjugation,” J. Opt. Soc. Am.73, 529–537 (1983). [CrossRef]
  22. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon.2, 110–115 (2008). [CrossRef]
  23. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104, 100601 (2010). [CrossRef] [PubMed]
  24. A. A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett.28, 88–89 (1976). [CrossRef]
  25. Y. Tomita, K. Kyuma, R. Yahalom, and A. A. Yariv, “Demonstration of amplitude-distortion correction by modal dispersal and phase conjugation,” Opt. Lett.12, 1020–1022 (1987). [CrossRef] [PubMed]
  26. I. McMichael, P. Yeh, and P. Beckwith, “Correction of polarization and modal scrambling in multimode fibers by phase conjugation,” Opt. Lett.12, 507–509 (1987). [CrossRef] [PubMed]
  27. C. Bellanger, A. Brignon, J. Colineau, and J. P. Huignard, “Coherent fiber combining by digital holography,” Opt. Lett.33, 2937–2939 (2008). [CrossRef] [PubMed]
  28. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” J. Mod. Opt.24, 1051–1073 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited