OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 271–286

Parametric estimation of 3D tubular structures for diffuse optical tomography

Fridrik Larusson, Pamela G. Anderson, Elizabeth Rosenberg, Misha E. Kilmer, Angelo Sassaroli, Sergio Fantini, and Eric L. Miller  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 2, pp. 271-286 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: October 26, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 22, 2012
Published: January 17, 2013

Fridrik Larusson, Pamela G. Anderson, Elizabeth Rosenberg, Misha E. Kilmer, Angelo Sassaroli, Sergio Fantini, and Eric L. Miller, "Parametric estimation of 3D tubular structures for diffuse optical tomography," Biomed. Opt. Express 4, 271-286 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yang, A. Sassaroli, D. K. Chen, M. J. Homer, R. A. Graham, and S. Fantini, “Near-infrared, broad-band spectral imaging of the human breast for quantitative oximetry: applications to healthy and cancerous breasts,” J. Innov. Opt. Health Sci.3, 267–277 (2010). [CrossRef]
  2. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous diffuse optical tomography,” Opt. Lett.29, 256–258 (2004). [CrossRef] [PubMed]
  3. S. van de Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12, 343–348, 2010. [CrossRef]
  4. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express15, 8043–8058 (2007). [CrossRef] [PubMed]
  5. Y. Bresler, J. A. Fessler, and A. Macovski, “A bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain,” IEEE Trans. Pattern Anal. Mach. Intell.2, 840–858 (1989). [CrossRef]
  6. R. A. Jesinger, G. E. Lattin, E. A. Ballard, S. M. Zelasko, and L. M. Glassman, “Vascular abnormalities of the breast: arterial and venous disorders, vascular masses, and mimic lesions with radiologic-pathologic correlation,” Radiographics31, E117–E136 (2011). [CrossRef] [PubMed]
  7. M. Belge, M. E. Kilmer, and E. L. Miller, “Efficient determination of multiple regularization parameters in a generalized l-curve framework,” Inverse Probl.18, 1161–1183 (2002). [CrossRef]
  8. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40, 398–407(2011). [CrossRef] [PubMed]
  9. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techinques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol.45, 1051–1069 (2000). [CrossRef] [PubMed]
  10. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: Initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004). [CrossRef]
  11. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett.26, 701–703 (2001). [CrossRef]
  12. F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011). [CrossRef]
  13. A. J. Laub, Matrix Analysis for Scientists and Engineers, 1st ed. (Society for Industrial and Applied Mathematics, 2004),
  14. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media, 1st ed. (SPIE, 2009).
  15. F. Larusson, S. Fantini, and E. L. Miller, “Parametric level set reconstruction methods for hyperspectral diffuse optical tomography,” Biomed. Opt. Express3, 1006–1024 (2012). [CrossRef] [PubMed]
  16. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999). [CrossRef]
  17. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express1, 404–413 (1997). [CrossRef] [PubMed]
  18. A. Aghasi, M. Kilmer, and E. L. Miller, “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011). [CrossRef]
  19. M. E. Kilmer, E. L. Miller, A. Barbaro, and David Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42, 3129–3144 (2003). [CrossRef] [PubMed]
  20. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, 2001), 1st ed. [CrossRef]
  21. T. Chan and L. Vese, “Active contours without edges,” Inverse Probl.10(2), 266–277 (2001).
  22. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002)
  23. K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-linear least squares problems”, Informatics and Mathematical Modelling, Technical University of Denmark, DTU,Nielsen Lecture Notes (2004).
  24. C. R. Vogel, Computational Methods for Inverse Problems, 1st ed. (SIAM, 2002). [CrossRef]
  25. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9 (2004). [CrossRef] [PubMed]
  26. S. D. Konecky, R. Choe, A. Corlu, K. Lee, R. Wiener, S. M. Srinivas, J. R. Saffer, R. Freifelder, J. S. Karp, N. Hajjioui, F. A., and A. G. Yodh, “Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography,” Med. Phys.35, 446–455 (2008). [CrossRef] [PubMed]
  27. O. Semerci and E. L. Miller, “A parametric level set approach to simultaneous object identification and background reconstruction for dual energy computed tomography,” IEEE Trans. Image Process.21, 2719–2734 (2012). [CrossRef] [PubMed]
  28. T. Tarvainen, V. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Corrections to linear methods for diffuse optical tomography using approximation error modelling,” Biomed. Opt. Express1, 209–222 (2010). [CrossRef]
  29. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, 1st ed. (SIAM,1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited