OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 298–306

Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging

Adrien Ponticorvo, Eren Taydas, Amaan Mazhar, Thomas Scholz, Hak-Su Kim, Jonathan Rimler, Gregory R. D. Evans, David J. Cuccia, and Anthony J. Durkin  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 2, pp. 298-306 (2013)
http://dx.doi.org/10.1364/BOE.4.000298


View Full Text Article

Enhanced HTML    Acrobat PDF (1789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of tissue transfer flaps has become a common and effective technique for reconstructing or replacing damaged tissue. While the overall failure rate associated with these procedures is relatively low (5-10%), the failure rate of tissue flaps that require additional surgery is significantly higher (40-60%). The reason for this is largely due to the absence of a technique for objectively assessing tissue health after surgery. Here we have investigated spatial frequency domain imaging (SFDI) as a potential tool to do this. By projecting wide-field patterned illumination at multiple wavelengths onto a tissue surface, SFDI is able to quantify absolute concentrations of oxygenated and deoxygenated hemoglobin over a large field of view. We have assessed the sensitivity of SFDI in a swine pedicle flap model by using a controlled vascular occlusion system that reduced blood flow by 25%, 50%, 75%, or 100% of the baseline values in either the vein or artery. SFDI was able to detect significant changes for oxygenated hemoglobin, deoxygenated hemoglobin, or tissue oxygen saturation in partial arterial occlusions of at least 50% and partial venous occlusions of at least 25%. This shows SFDI is sensitive enough to quantify changes in the tissue hemoglobin state during partial occlusions and thus has the potential to be a powerful tool for the early prediction of tissue flap failure.

© 2013 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: November 8, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: January 4, 2013
Published: January 18, 2013

Citation
Adrien Ponticorvo, Eren Taydas, Amaan Mazhar, Thomas Scholz, Hak-Su Kim, Jonathan Rimler, Gregory R. D. Evans, David J. Cuccia, and Anthony J. Durkin, "Quantitative assessment of partial vascular occlusions in a swine pedicle flap model using spatial frequency domain imaging," Biomed. Opt. Express 4, 298-306 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-2-298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Smit, P. M. N. Werker, A. G. Liss, M. Enajat, G. H. de Bock, T. Audolfsson, and R. Acosta, “Introduction of the implantable Doppler system did not lead to an increased salvage rate of compromised flaps: a multivariate analysis,” Plast. Reconstr. Surg.125(6), 1710–1717 (2010). [CrossRef] [PubMed]
  2. K.-T. Chen, S. Mardini, D. C.-C. Chuang, C.-H. Lin, M.-H. Cheng, Y.-T. Lin, W.-C. Huang, C.-K. Tsao, and F.-C. Wei, “Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers,” Plast. Reconstr. Surg.120(1), 187–195 (2007). [CrossRef] [PubMed]
  3. S. S. Kroll, M. A. Schusterman, G. P. Reece, M. J. Miller, G. R. Evans, G. L. Robb, and B. J. Baldwin, “Timing of pedicle thrombosis and flap loss after free-tissue transfer,” Plast. Reconstr. Surg.98(7), 1230–1233 (1996). [CrossRef] [PubMed]
  4. D. Chubb, W. M. Rozen, I. S. Whitaker, R. Acosta, D. Grinsell, and M. W. Ashton, “The efficacy of clinical assessment in the postoperative monitoring of free flaps: a review of 1140 consecutive cases,” Plast. Reconstr. Surg.125(4), 1157–1166 (2010). [CrossRef] [PubMed]
  5. P. Pohlenz, M. Blessmann, F. Blake, L. Li, R. Schmelzle, and M. Heiland, “Outcome and complications of 540 microvascular free flaps: the Hamburg experience,” Clin. Oral Investig.11(1), 89–92 (2007). [CrossRef] [PubMed]
  6. D. T. Bui, P. G. Cordeiro, Q.-Y. Hu, J. J. Disa, A. Pusic, and B. J. Mehrara, “Free flap reexploration: indications, treatment, and outcomes in 1193 free flaps,” Plast. Reconstr. Surg.119(7), 2092–2100 (2007). [CrossRef] [PubMed]
  7. M. H. Steele, “Three-year experience using near infrared spectroscopy tissue oximetry monitoring of free tissue transfers,” Ann. Plast. Surg.66(5), 540–545 (2011). [CrossRef] [PubMed]
  8. M. R. Pharaon, T. Scholz, S. Bogdanoff, D. Cuccia, A. J. Durkin, D. B. Hoyt, and G. R. D. Evans, “Early detection of complete vascular occlusion in a pedicle flap model using quantitative [corrected] spectral imaging,” Plast. Reconstr. Surg.126(6), 1924–1935 (2010). [CrossRef] [PubMed]
  9. V. E. Hjortdal, E. S. Hansen, and E. Hauge, “Myocutaneous flap ischemia: flow dynamics following venous and arterial obstruction,” Plast. Reconstr. Surg.89(6), 1083–1091 (1992). [CrossRef] [PubMed]
  10. J. A. Russell, M. L. Conforti, N. P. Connor, and G. K. Hartig, “Cutaneous tissue flap viability following partial venous obstruction,” Plast. Reconstr. Surg.117(7), 2259–2266, discussion 2267–2268 (2006). [CrossRef] [PubMed]
  11. D. Chubb, I. S. Whitaker, W. M. Rozen, and M. W. Ashton, “Continued observations in the postoperative monitoring of free flaps: preliminary experiences with Masimo Radical-7 transcutaneous plethysmography and pulse oximetry,” Plast. Reconstr. Surg.129(1), 222e–223e (2012). [CrossRef] [PubMed]
  12. M. S. Thorniley, J. S. Sinclair, N. J. Barnett, C. B. Shurey, and C. J. Green, “The use of near-infrared spectroscopy for assessing flap viability during reconstructive surgery,” Br. J. Plast. Surg.51(3), 218–226 (1998). [CrossRef] [PubMed]
  13. A. Yafi, T. S. Vetter, T. Scholz, S. Patel, R. B. Saager, D. J. Cuccia, G. R. Evans, and A. J. Durkin, “Postoperative quantitative assessment of reconstructive tissue status in a cutaneous flap model using spatial frequency domain imaging,” Plast. Reconstr. Surg.127(1), 117–130 (2011). [CrossRef] [PubMed]
  14. I. S. Whitaker, G. F. Pratt, W. M. Rozen, S. A. Cairns, M. D. Barrett, L. Y. Hiew, M. A. Cooper, and D. J. Leaper, “Near infrared spectroscopy for monitoring flap viability following breast reconstruction,” J. Reconstr. Microsurg.28(03), 149–154 (2012). [CrossRef] [PubMed]
  15. M. L. Gimbel, M. D. Rollins, E. Fukaya, and H. W. Hopf, “Monitoring partial and full venous outflow compromise in a rabbit skin flap model,” Plast. Reconstr. Surg.124(3), 796–803 (2009). [CrossRef] [PubMed]
  16. F. Lorenzetti, J. Ahovuo, S. Suominen, A. Salmi, and S. Asko-Seljavaara, “Colour Doppler ultrasound evaluation of haemodynamic changes in free tram flaps and their donor sites,” Scand. J. Plast. Reconstr. Surg. Hand Surg.36(4), 202–206 (2002). [CrossRef] [PubMed]
  17. K. T. Vakharia, D. Henstrom, R. Lindsay, M. B. Cunnane, M. Cheney, and T. Hadlock, “Color Doppler ultrasound: effective monitoring of the buried free flap in facial reanimation,” Otolaryngol. Head Neck Surg.146(3), 372–376 (2012). [CrossRef] [PubMed]
  18. A. Matsui, B. T. Lee, J. H. Winer, R. G. Laurence, and J. V. Frangioni, “Quantitative assessment of perfusion and vascular compromise in perforator flaps using a near-infrared fluorescence-guided imaging system,” Plast. Reconstr. Surg.124(2), 451–460 (2009). [CrossRef] [PubMed]
  19. D. Chubb, W. M. Rozen, I. S. Whitaker, and M. W. Ashton, “Images in plastic surgery: digital thermographic photography (“thermal imaging”) for preoperative perforator mapping,” Ann. Plast. Surg.66(4), 324–325 (2011). [CrossRef] [PubMed]
  20. S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt.16(8), 086015 (2011). [CrossRef] [PubMed]
  21. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  22. A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt.15(6), 061716 (2010). [CrossRef] [PubMed]
  23. T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt.15(3), 036013 (2010). [CrossRef] [PubMed]
  24. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt.14(3), 034045 (2009). [CrossRef] [PubMed]
  25. M. S. Irwin, M. S. Thorniley, C. J. Doré, and C. J. Green, “Near infra-red spectroscopy: a non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps,” Br. J. Plast. Surg.48(1), 14–22 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3966 KB)      QuickTime
» Media 2: AVI (4063 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited