OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 322–330

Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope

Zhen Qiu, Zhongyao Liu, Xiyu Duan, Supang Khondee, Bishnu Joshi, Michael J. Mandella, Kenn Oldham, Katsuo Kurabayashi, and Thomas D. Wang  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 2, pp. 322-330 (2013)
http://dx.doi.org/10.1364/BOE.4.000322


View Full Text Article

Enhanced HTML    Acrobat PDF (2194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

© 2013 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5810) Medical optics and biotechnology : Scanning microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 10, 2012
Revised Manuscript: January 16, 2013
Manuscript Accepted: January 16, 2013
Published: January 24, 2013

Citation
Zhen Qiu, Zhongyao Liu, Xiyu Duan, Supang Khondee, Bishnu Joshi, Michael J. Mandella, Kenn Oldham, Katsuo Kurabayashi, and Thomas D. Wang, "Targeted vertical cross-sectional imaging with handheld near-infrared dual axes confocal fluorescence endomicroscope," Biomed. Opt. Express 4, 322-330 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-2-322


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. D. Wang, S. Friedland, P. Sahbaie, R. Soetikno, P. L. Hsiung, J. T. C. Liu, J. M. Crawford, and C. H. Contag, “Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology,” Clin. Gastroenterol. Hepatol.5(11), 1300–1305 (2007). [CrossRef] [PubMed]
  2. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology127(3), 706–713 (2004). [CrossRef] [PubMed]
  3. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express15(15), 9113–9122 (2007). [CrossRef] [PubMed]
  4. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express18(4), 3805–3819 (2010). [CrossRef] [PubMed]
  5. J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, and S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc.7(8), 1456–1469 (2012). [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  7. K. S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt.17(12), 126006 (2012). [CrossRef] [PubMed]
  8. N. Callamaras and I. R. Parker, “Construction of a confocal microscope for real-time x-y and x-z imaging,” Cell Calcium26(6), 271–279 (1999). [CrossRef] [PubMed]
  9. W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007). [CrossRef] [PubMed]
  10. H. Mansoor, H. Zeng, K. Chen, Y. Yu, J. Zhao, and M. Chiao, “Vertical optical sectioning using a magnetically driven confocal microscanner aimed for in vivo clinical imaging,” Opt. Express19(25), 25161–25172 (2011). [CrossRef] [PubMed]
  11. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods8(10), 871–878 (2011). [CrossRef] [PubMed]
  12. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett.28(6), 414–416 (2003). [CrossRef] [PubMed]
  13. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt.13(3), 034020 (2008). [CrossRef] [PubMed]
  14. W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract,” J. Biomed. Opt.17(2), 021102 (2012). [CrossRef] [PubMed]
  15. L. K. Wong, M. J. Mandella, G. S. Kino, and T. D. Wang, “Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture,” Opt. Lett.32(12), 1674–1676 (2007). [CrossRef] [PubMed]
  16. P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med.14(4), 454–458 (2008). [CrossRef] [PubMed]
  17. S. J. Miller, C. M. Lee, B. P. Joshi, A. Gaustad, E. J. Seibel, and T. D. Wang, “Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy,” J. Biomed. Opt.17(2), 021103 (2012). [CrossRef] [PubMed]
  18. K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a micro-electro-mechanical system,” Nature396(6707), 149–152 (1998). [CrossRef]
  19. H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sens. Actuators A Phys.89(1–2), 104–111 (2001). [CrossRef]
  20. Z. Qiu, J. Pulskamp, X. Lin, C. H. Rhee, T. D. Wang, R. Polcawich, and K. Oldham, “Large displacement vertical translational actuator based on piezoelectric thin films,” J. Micromech. Microeng.20(7), 075016 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited