OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 2 — Feb. 1, 2013
  • pp: 351–363

In vivo imaging of the rodent eye with swept source/Fourier domain OCT

Jonathan J. Liu, Ireneusz Grulkowski, Martin F. Kraus, Benjamin Potsaid, Chen D. Lu, Bernhard Baumann, Jay S. Duker, Joachim Hornegger, and James G. Fujimoto  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 2, pp. 351-363 (2013)
http://dx.doi.org/10.1364/BOE.4.000351


View Full Text Article

Enhanced HTML    Acrobat PDF (1640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Ophthalmology Applications

History
Original Manuscript: December 11, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 18, 2013
Published: January 29, 2013

Citation
Jonathan J. Liu, Ireneusz Grulkowski, Martin F. Kraus, Benjamin Potsaid, Chen D. Lu, Bernhard Baumann, Jay S. Duker, Joachim Hornegger, and James G. Fujimoto, "In vivo imaging of the rodent eye with swept source/Fourier domain OCT," Biomed. Opt. Express 4, 351-363 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-2-351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Tsonis, Animal Models in Eye Research (Academic, 2008).
  2. N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999). [PubMed]
  3. R. S. Smith, Systematic Evaluation of the Mouse Eye: Anatomy, Pathology, and Biomethods (CRC Press, Boca Raton, Fla., 2002).
  4. N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005). [CrossRef] [PubMed]
  5. M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005). [CrossRef] [PubMed]
  6. H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006). [CrossRef] [PubMed]
  7. M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006). [CrossRef] [PubMed]
  8. M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007). [CrossRef] [PubMed]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  10. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006). [CrossRef] [PubMed]
  11. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007). [CrossRef] [PubMed]
  12. K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008). [CrossRef] [PubMed]
  13. G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009). [CrossRef] [PubMed]
  14. A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011). [CrossRef] [PubMed]
  15. S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011). [CrossRef] [PubMed]
  16. S. Hariri, A. A. Moayed, A. Dracopolos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range,” Opt. Express17(26), 24304–24316 (2009). [CrossRef] [PubMed]
  17. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  18. L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010). [CrossRef] [PubMed]
  19. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003). [CrossRef] [PubMed]
  20. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  21. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  22. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  23. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  24. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011). [CrossRef] [PubMed]
  25. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  26. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012). [CrossRef] [PubMed]
  27. L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986). [CrossRef] [PubMed]
  28. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  29. Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express3(9), 2220–2233 (2012). [CrossRef] [PubMed]
  30. Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012). [CrossRef] [PubMed]
  31. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006). [CrossRef] [PubMed]
  32. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3029 KB)     
» Media 2: MPG (3056 KB)     
» Media 3: AVI (1364 KB)     
» Media 4: AVI (1334 KB)     
» Media 5: AVI (1485 KB)     
» Media 6: AVI (1489 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited