OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 3 — Mar. 1, 2013
  • pp: 387–396

Full OCT anterior segment biometry: an application in cataract surgery

Sergio Ortiz, Pablo Pérez-Merino, Sonia Durán, Miriam Velasco-Ocana, Judith Birkenfeld, Alberto de Castro, Ignacio Jiménez-Alfaro, and Susana Marcos  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 3, pp. 387-396 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In vivo three-dimensional (3-D) anterior segment biometry before and after cataract surgery was analyzed by using custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT). The system was provided with custom algorithms for denoising, segmentation, full distortion correction (fan and optical) and merging of the anterior segment volumes (cornea, iris, and crystalline lens or IOL), to provide fully quantitative data of the anterior segment of the eye. The method was tested on an in vitro artificial eye with known surfaces geometry at different orientations and demonstrated on an aging cataract patient in vivo. Biometric parameters CCT, ACD/ILP, CLT/ILT Tilt and decentration are retrieved with a very high degree of accuracy. IOL was placed 400 μm behind the natural crystalline lens, The IOL was aligned with a similar orientation of the natural lens (2.47 deg superiorly), but slightly lower amounts (0.77 deg superiorly). The IOL was decentered superiorly (0.39 mm) and nasally (0.26 mm).

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Ophthalmology Applications

Original Manuscript: October 19, 2012
Revised Manuscript: December 26, 2012
Manuscript Accepted: January 3, 2013
Published: January 31, 2013

Sergio Ortiz, Pablo Pérez-Merino, Sonia Durán, Miriam Velasco-Ocana, Judith Birkenfeld, Alberto de Castro, Ignacio Jiménez-Alfaro, and Susana Marcos, "Full OCT anterior segment biometry: an application in cataract surgery," Biomed. Opt. Express 4, 387-396 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Barbero and S. Marcos, “Analytical tools for customized design of monofocal intraocular lenses,” Opt. Express15(14), 8576–8591 (2007). [CrossRef] [PubMed]
  2. R. Bellucci and S. Morselli, “Optimizing higher-order aberrations with intraocular lens technology,” Curr. Opin. Ophthalmol.18(1), 67–73 (2007). [CrossRef] [PubMed]
  3. S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg.34(3), 368–376 (2008). [CrossRef] [PubMed]
  4. T. Olsen, K. Thim, and L. Corydon, “Theoretical versus SRK I and SRK II calculation of intraocular lens power,” J. Cataract Refract. Surg.16(2), 217–225 (1990). [PubMed]
  5. T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand.85(5), 472–485 (2007). [CrossRef] [PubMed]
  6. P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg.28(8), 1412–1419 (2002). [CrossRef] [PubMed]
  7. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci.47(10), 4651–4658 (2006). [CrossRef] [PubMed]
  8. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express15(5), 2204–2218 (2007). [CrossRef] [PubMed]
  9. W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C. K. Hitzenberger, and A. F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol.126(4), 524–534 (1998). [CrossRef] [PubMed]
  10. W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol.238(9), 765–773 (2000). [CrossRef] [PubMed]
  11. T. Swartz, L. Marten, and M. Wang, “Measuring the cornea: the latest developments in corneal topography,” Curr. Opin. Ophthalmol.18(4), 325–333 (2007). [CrossRef] [PubMed]
  12. M. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010). [CrossRef] [PubMed]
  13. C. Canovas and P. Artal, “Customized eye models for determining optimized intraocular lenses power,” Biomed. Opt. Express2(6), 1649–1662 (2011). [CrossRef] [PubMed]
  14. T. Olsen, “Prediction of the effective postoperative (intraocular lens) anterior chamber depth,” J. Cataract Refract. Surg.32(3), 419–424 (2006). [CrossRef] [PubMed]
  15. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  16. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009). [CrossRef] [PubMed]
  17. P. Artal, S. Marcos, I. Iglesias, and D. G. Green, “Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye,” Vision Res.36(22), 3575–3586 (1996). [CrossRef] [PubMed]
  18. P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg.14(2), 129–135 (1988). [PubMed]
  19. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006). [CrossRef] [PubMed]
  20. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express14(22), 10945–10956 (2006). [CrossRef] [PubMed]
  21. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007). [CrossRef] [PubMed]
  22. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  23. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  24. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009). [CrossRef] [PubMed]
  25. Y. Li, M. Tang, X. Zhang, C. H. Salaroli, J. L. Ramos, and D. Huang, “Pachymetric mapping with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(5), 826–831 (2010). [CrossRef] [PubMed]
  26. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007). [CrossRef] [PubMed]
  27. R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010). [CrossRef] [PubMed]
  28. M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010). [CrossRef] [PubMed]
  29. G. Cleary, D. J. Spalton, and J. Marshall, “Anterior chamber depth measurements in eyes with an accommodating intraocular lens: agreement between partial coherence interferometry and optical coherence tomography,” J. Cataract Refract. Surg.36(5), 790–798 (2010). [CrossRef] [PubMed]
  30. D. A. Kumar, A. Agarwal, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal, “Evaluation of intraocular lens tilt with anterior segment optical coherence tomography,” Am. J. Ophthalmol.151(3), 406–412.e2 (2011). [CrossRef] [PubMed]
  31. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  32. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  33. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011). [CrossRef] [PubMed]
  34. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010). [CrossRef] [PubMed]
  35. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011). [CrossRef] [PubMed]
  36. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012). [CrossRef] [PubMed]
  37. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012). [CrossRef] [PubMed]
  38. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009). [CrossRef] [PubMed]
  39. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  40. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vision8(1), 18 (2008). [CrossRef] [PubMed]
  41. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res.46(6-7), 993–1001 (2006). [CrossRef] [PubMed]
  42. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001). [CrossRef] [PubMed]
  43. J. C. Merriam, L. Zheng, J. E. Merriam, M. Zaider, and B. Lindström, “The effect of incisions for cataract on corneal curvature,” Ophthalmology110(9), 1807–1813 (2003). [CrossRef] [PubMed]
  44. S. Marcos, P. Rosales, L. Llorente, and I. Jiménez-Alfaro, “Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses,” J. Cataract Refract. Surg.33(2), 217–226 (2007). [CrossRef] [PubMed]
  45. B. Lundberg, M. Jonsson, and A. Behndig, “Postoperative corneal swelling correlates strongly to corneal endothelial cell loss after phacoemulsification cataract surgery,” Am. J. Ophthalmol.139(6), 1035–1041 (2005). [CrossRef] [PubMed]
  46. Q. Zhang, W. Jin, and Q. Wang, “Repetability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy,” J. Cataract Refract. Surg.36(6), 941–946 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited