OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 3 — Mar. 1, 2013
  • pp: 412–426

Effect of task-related extracerebral circulation on diffuse optical tomography: experimental data and simulations on the forehead

Tiina Näsi, Hanna Mäki, Petri Hiltunen, Juha Heiskala, Ilkka Nissilä, Kalle Kotilahti, and Risto J. Ilmoniemi  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 3, pp. 412-426 (2013)
http://dx.doi.org/10.1364/BOE.4.000412


View Full Text Article

Enhanced HTML    Acrobat PDF (8490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of task-related extracerebral circulatory changes on diffuse optical tomography (DOT) of brain activation was evaluated using experimental data from 14 healthy human subjects and computer simulations. Total hemoglobin responses to weekday-recitation, verbal-fluency, and hand-motor tasks were measured with a high-density optode grid placed on the forehead. The tasks caused varying levels of mental and physical stress, eliciting extracerebral circulatory changes that the reconstruction algorithm was unable to fully distinguish from cerebral hemodynamic changes, resulting in artifacts in the brain activation images. Crosstalk between intra- and extracranial layers was confirmed by the simulations. The extracerebral effects were attenuated by superficial signal regression and depended to some extent on the heart rate, thus allowing identification of hemodynamic changes related to brain activation during the verbal-fluency task. During the hand-motor task, the extracerebral component was stronger, making the separation less clear. DOT provides a tool for distinguishing extracerebral components from signals of cerebral origin. Especially in the case of strong task-related extracerebral circulatory changes, however, sophisticated reconstruction methods are needed to eliminate crosstalk artifacts.

© 2013 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: October 26, 2012
Revised Manuscript: January 28, 2013
Manuscript Accepted: February 7, 2013
Published: February 13, 2013

Citation
Tiina Näsi, Hanna Mäki, Petri Hiltunen, Juha Heiskala, Ilkka Nissilä, Kalle Kotilahti, and Risto J. Ilmoniemi, "Effect of task-related extracerebral circulation on diffuse optical tomography: experimental data and simulations on the forehead," Biomed. Opt. Express 4, 412-426 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-3-412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012). [CrossRef] [PubMed]
  2. P. D. Drummond, “Adrenergic receptors in the forehead microcirculation,” Clin. Auton. Res.6(1), 23–27 (1996). [CrossRef] [PubMed]
  3. P. D. Drummond, “The effect of adrenergic blockade on blushing and facial flushing,” Psychophysiology34(2), 163–168 (1997). [CrossRef] [PubMed]
  4. L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011). [CrossRef] [PubMed]
  5. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009). [CrossRef] [PubMed]
  6. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011). [CrossRef] [PubMed]
  7. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006). [CrossRef] [PubMed]
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  9. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci.367(1900), 3055–3072 (2009). [CrossRef] [PubMed]
  10. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  11. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010). [PubMed]
  12. S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics2, 12 (2010). [PubMed]
  13. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage59(4), 3201–3211 (2012). [CrossRef] [PubMed]
  14. I. Nissilä, T. Noponen, K. Kotilahti, T. Katila, L. Lipiäinen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum.76(4), 044302 (2005). [CrossRef]
  15. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt.48(10), D137–D143 (2009). [CrossRef] [PubMed]
  16. J. Heiskala, M. Pollari, M. Metsäranta, P. E. Grant, and I. Nissilä, “Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain,” Opt. Express17(17), 14977–14992 (2009). [CrossRef] [PubMed]
  17. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. Thesis (University College London, Department of Medical Physics and Bioengineering, 1991).
  18. Y. Yamashita, A. Maki, and H. Koizumi, “Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration,” Med. Phys.28(6), 1108–1114 (2001). [CrossRef] [PubMed]
  19. C. R. Genovese, N. A. Lazar, and T. Nichols, “Thresholding of statistical maps in functional neuroimaging using the false discovery rate,” Neuroimage15(4), 870–878 (2002). [CrossRef] [PubMed]
  20. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt.8(1), 87–92 (2003). [CrossRef] [PubMed]
  21. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol.48(15), 2405–2418 (2003). [CrossRef] [PubMed]
  22. J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage40(4), 1469–1481 (2008). [CrossRef] [PubMed]
  23. S. G. Costafreda, C. H. Y. Fu, L. Lee, B. Everitt, M. J. Brammer, and A. S. David, “A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus,” Hum. Brain Mapp.27(10), 799–810 (2006). [CrossRef] [PubMed]
  24. S. Heim, S. B. Eickhoff, and K. Amunts, “Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?” Neuroimage40(3), 1362–1368 (2008). [CrossRef] [PubMed]
  25. P. Hiltunen, S. Särkkä, I. Nissilä, A. Lajunen, and J. Lampinen, “State space regularization in the nonstationary inverse problem for diffuse optical tomography,” Inverse Probl.27(2), 025009 (2011). [CrossRef]
  26. J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009). [CrossRef] [PubMed]
  27. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology40(4), 548–560 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2336 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited