OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 3 — Mar. 1, 2013
  • pp: 466–480

Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation

Yilei Shao, Aizhu Tao, Hong Jiang, Meixiao Shen, Jianguang Zhong, Fan Lu, and Jianhua Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 3, pp. 466-480 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3777 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated a novel approach of imaging the anterior segment including the ciliary muscle using combined and synchronized two spectral domain optical coherence tomography devices (SD-OCT). In one SD-OCT, a Complementary Metal-Oxide-Semiconductor Transistor (CMOS) camera and an alternating reference arm was used to image the anterior segment from the cornea to the lens. Another SD-OCT for imaging the ciliary muscle was equipped with a light source with a center wavelength of 1,310 nm and a bandwidth of 75 nm. Repeated measurements were performed under relaxed and 4.00 D accommodative stimulus states in six eyes from 6 subjects. We also imaged dynamic changes in the anterior segment in one eye during accommodation. The biometry of the anterior segment and the ciliary muscle was obtained. The combined system appeared to be capable to simultaneously real-time image the biometry of the anterior segment, including the ciliary muscle, in vivo during accommodation.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7322) Vision, color, and visual optics : Visual optics, accommodation

ToC Category:
Ophthalmology Applications

Original Manuscript: December 10, 2012
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 18, 2013
Published: February 21, 2013

Yilei Shao, Aizhu Tao, Hong Jiang, Meixiao Shen, Jianguang Zhong, Fan Lu, and Jianhua Wang, "Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation," Biomed. Opt. Express 4, 466-480 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. von Helmholtz, “Uber die akkommodation des auges,” Arch. Ophthalmol.1, 1–74 (1855).
  2. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt.15(4), 255–272 (1995). [CrossRef] [PubMed]
  3. M. T. Pardue and J. G. Sivak, “Age-related changes in human ciliary muscle,” Optom. Vis. Sci.77(4), 204–210 (2000). [CrossRef] [PubMed]
  4. S. Tamm, E. Tamm, and J. W. Rohen, “Age-related changes of the human ciliary muscle. A quantitative morphometric study,” Mech. Ageing Dev.62(2), 209–221 (1992). [CrossRef] [PubMed]
  5. H. J. Wyatt, “Application of a simple mechanical model of accommodation to the aging eye,” Vision Res.33(5-6), 731–738 (1993). [CrossRef] [PubMed]
  6. L. Stark, “Presbyopia in light of accommodation,” Am. J. Optom. Physiol. Opt.65(5), 407–416 (1988). [CrossRef] [PubMed]
  7. S. A. Strenk, L. M. Strenk, and J. F. Koretz, “The mechanism of presbyopia,” Prog. Retin. Eye Res.24(3), 379–393 (2005). [CrossRef] [PubMed]
  8. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012). [CrossRef] [PubMed]
  9. P. S. Yan, H. T. Lin, Q. L. Wang, and Z. P. Zhang, “Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography,” Ophthalmology117(12), 2301–2307 (2010). [CrossRef] [PubMed]
  10. M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011). [CrossRef] [PubMed]
  11. Y. Yuan, F. Chen, M. Shen, F. Lu, and J. Wang, “Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography,” Eye Contact Lens38(2), 102–108 (2012). [CrossRef] [PubMed]
  12. L. A. Lossing, L. T. Sinnott, C. Y. Kao, K. Richdale, and M. D. Bailey, “Measuring changes in ciliary muscle thickness with accommodation in young adults,” Optom. Vis. Sci.89(5), 719–726 (2012). [CrossRef] [PubMed]
  13. A. L. Sheppard and L. N. Davies, “The effect of ageing on in vivo human ciliary muscle morphology and contractility,” Invest. Ophthalmol. Vis. Sci.52(3), 1809–1816 (2011). [CrossRef] [PubMed]
  14. K. Richdale, M. D. Bailey, L. T. Sinnott, C. Y. Kao, K. Zadnik, and M. A. Bullimore, “The effect of phenylephrine on the ciliary muscle and accommodation,” Optom. Vis. Sci.89(10), e1507–e1511 (2012). [CrossRef] [PubMed]
  15. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010). [CrossRef] [PubMed]
  16. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  17. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  18. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  19. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009). [CrossRef] [PubMed]
  20. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012). [CrossRef] [PubMed]
  21. C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest. Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011). [PubMed]
  22. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012). [CrossRef] [PubMed]
  23. T. Ide, J. Wang, A. Tao, T. Leng, G. D. Kymionis, T. P. O’Brien, and S. H. Yoo, “Intraoperative use of three-dimensional spectral-domain optical coherence tomography,” Ophthalmic Surg. Lasers Imaging41(2), 250–254 (2010). [CrossRef] [PubMed]
  24. T. Leng, B. J. Lujan, S. H. Yoo, and J. Wang, “Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision,” Ophthalmic Surg. Lasers Imaging39(4Suppl), S132–S134 (2008). [PubMed]
  25. American National Standards Institute, “American national standard for safe use of lasers,” in Laser Institute of America (Orlando, FL, 2000), pp. 45–49.
  26. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express3(10), 2471–2488 (2012). [CrossRef] [PubMed]
  27. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012). [CrossRef] [PubMed]
  28. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012). [CrossRef] [PubMed]
  29. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  30. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009). [CrossRef] [PubMed]
  31. C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012). [CrossRef] [PubMed]
  32. S. R. Uhlhorn, F. Manns, H. Tahi, P. O. Rol, and J.-M. A. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998). [CrossRef]
  33. D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005). [CrossRef]
  34. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  35. M. D. Bailey, L. T. Sinnott, and D. O. Mutti, “Ciliary body thickness and refractive error in children,” Invest. Ophthalmol. Vis. Sci.49(10), 4353–4360 (2008). [CrossRef] [PubMed]
  36. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  37. A. L. Sheppard and L. N. Davies, “In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia,” Invest. Ophthalmol. Vis. Sci.51(12), 6882–6889 (2010). [CrossRef] [PubMed]
  38. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008). [CrossRef] [PubMed]
  39. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci.40(6), 1162–1169 (1999). [PubMed]
  40. A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996). [CrossRef] [PubMed]
  41. A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994). [CrossRef] [PubMed]
  42. M. A. Croft, A. Glasser, G. Heatley, J. McDonald, T. Ebbert, D. B. Dahl, N. V. Nadkarni, and P. L. Kaufman, “Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye,” Invest. Ophthalmol. Vis. Sci.47(3), 1076–1086 (2006). [CrossRef] [PubMed]
  43. S. Jeon, W. K. Lee, K. Lee, and N. J. Moon, “Diminished ciliary muscle movement on accommodation in myopia,” Exp. Eye Res.105, 9–14 (2012). [CrossRef] [PubMed]
  44. M. A. Croft, P. L. Kaufman, K. S. Crawford, M. W. Neider, A. Glasser, and L. Z. Bito, “Accommodation dynamics in aging rhesus monkeys,” Am. J. Physiol.275(6 Pt 2), R1885–R1897 (1998). [PubMed]
  45. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002). [CrossRef] [PubMed]
  46. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef] [PubMed]
  47. D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011). [CrossRef] [PubMed]
  48. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009). [CrossRef] [PubMed]
  49. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express15(12), 7117–7125 (2007). [CrossRef] [PubMed]
  50. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008). [CrossRef] [PubMed]
  51. H. A. Lewis, C. Y. Kao, L. T. Sinnott, and M. D. Bailey, “Changes in ciliary muscle thickness during accommodation in children,” Optom. Vis. Sci.89(5), 727–737 (2012). [CrossRef] [PubMed]
  52. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci.38(3), 569–578 (1997). [PubMed]
  53. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999). [CrossRef] [PubMed]
  54. T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics53(7), 892–903 (2010). [CrossRef] [PubMed]
  55. J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004). [CrossRef] [PubMed]
  56. H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express20(17), 19148–19159 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (545 KB)     
» Media 2: MP4 (468 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited