OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 538–547

Stokes vector based polarization resolved second harmonic microscopy of starch granules

Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Peter Török, and Fu-Jen Kao  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 538-547 (2013)
http://dx.doi.org/10.1364/BOE.4.000538


View Full Text Article

Enhanced HTML    Acrobat PDF (3802 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the measurement and analysis of the polarization state of second harmonic signals generated by starch granules, using a four-channel photon counting based Stokes-polarimeter. Various polarization parameters, such as the degree of polarization (DOP), the degree of linear polarization (DOLP), the degree of circular polarization (DOCP), and anisotropy are extracted from the 2D second harmonic Stokes images of starch granules. The concentric shell structure of a starch granule forms a natural photonic crystal structure. By integration over all the solid angle, it will allow very similar SHG quantum efficiency regardless of the angle or the states of incident polarization. Given type I phase matching and the concentric shell structure of a starch granule, one can easily infer the polarization states of the input beam from the resulting SH micrograph.

© 2013 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(320.0320) Ultrafast optics : Ultrafast optics
(160.1435) Materials : Biomaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: January 7, 2013
Revised Manuscript: February 23, 2013
Manuscript Accepted: February 23, 2013
Published: March 11, 2013

Citation
Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Peter Török, and Fu-Jen Kao, "Stokes vector based polarization resolved second harmonic microscopy of starch granules," Biomed. Opt. Express 4, 538-547 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  3. F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett.92(12), 123901 (2008). [CrossRef]
  4. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006). [CrossRef] [PubMed]
  5. P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem.83(9), 3224–3231 (2011). [CrossRef] [PubMed]
  6. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc.7(4), 654–669 (2012). [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  8. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt.14(1), 014001 (2009). [CrossRef] [PubMed]
  9. G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005). [CrossRef] [PubMed]
  10. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express1(5), 1347–1357 (2010). [CrossRef] [PubMed]
  11. Z. Y. Zhuo, C. S. Liao, C. H. Huang, J. Y. Yu, Y. Y. Tzeng, W. Lo, C. Y. Dong, H. C. Chui, Y. C. Huang, H. M. Lai, and S. W. Chu, “Second harmonic generation imaging—a new method for unraveling molecular information of starch,” J. Struct. Biol.171(1), 88–94 (2010). [CrossRef] [PubMed]
  12. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt.12(8), 084007 (2010). [CrossRef]
  13. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Effect of molecular organization on the image histograms of polarization SHG microscopy,” Biomed. Opt. Express3(10), 2681–2693 (2012). [CrossRef] [PubMed]
  14. R. L. Whistler, J. N. Bemiller, and E. F. Parschall, Starch: Chemistry and Technology (Academic Press, 1984), pp. 183–247.
  15. D. J. Gallant, B. Bouchet, A. Buléon, and S. Pérez, “Physical characteristics of starch granules and susceptibility to enzymatic degradation,” Eur. J. Clin. Nutr.46(Suppl 2), S3–S16 (1992). [PubMed]
  16. D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym.32(3-4), 177–191 (1997). [CrossRef]
  17. G. T. Oostergetel and E. F. J. van Bruggen, “On the origin of a low angle spacing in starch,” Starch41(9), 331–335 (1989). [CrossRef]
  18. G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, and S. Ushioda, “Detection of starch granules in a living plant by optical second harmonic microscopy,” J. Lumin.87-89, 824–826 (2000). [CrossRef]
  19. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express16(14), 10364–10371 (2008). [CrossRef] [PubMed]
  20. K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc.230(1), 70–75 (2008). [CrossRef] [PubMed]
  21. M. Wang, K. M. Reiser, and A. Knoesen, “Spectral moment invariant analysis of disorder in polarization-modulated second-harmonic-generation images obtained from collagen assemblies,” J. Opt. Soc. Am. A24(11), 3573–3586 (2007). [CrossRef] [PubMed]
  22. M. R. Foreman, C. Macias Romero, and P. Török, “A priori information and optimisation in polarimetry,” Opt. Express16(19), 15212–15227 (2008). [CrossRef] [PubMed]
  23. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett.10(7), 309–311 (1985). [CrossRef] [PubMed]
  24. P. A. Letnes, I. S. Nerbø, L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express18(22), 23095–23103 (2010). [CrossRef] [PubMed]
  25. C. W. Sun, C. C. Yang, and Y. W. Kiang, “Optical imaging based on time-resolved Stokes vectors in filamentous tissues,” Appl. Opt.42(4), 750–754 (2003). [CrossRef] [PubMed]
  26. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002). [CrossRef] [PubMed]
  27. V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Linearly polarized second harmonic generation microscopy reveals chirality,” Opt. Express18(8), 8286–8293 (2010). [CrossRef] [PubMed]
  28. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys.103(18), 8296–8298 (1995). [CrossRef]
  29. N. Mazumder, J. Qiu, M. R. Foreman, C. M. Romero, C.-W. Hu, H.-R. Tsai, P. Tӧrӧk, and F.-J. Kao, “Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter,” Opt. Express20(13), 14090–14099 (2012). [CrossRef] [PubMed]
  30. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  31. J. G. Webster, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook (CRC Press, 1998), Chap. 60.
  32. J. Qiu (Modern Optics Laboratory, National Yang-Ming University, 155 Li-Nong St., Taipei 112, Taiwan) and N. Mazumder are preparing a manuscript to be called “Stokes vector formalism based nonlinear optical microscopy.”
  33. A. Buléon, P. Colonna, V. Planchot, and S. Ball, “Starch granules: structure and biosynthesis,” Int. J. Biol. Macromol.23(2), 85–112 (1998). [CrossRef] [PubMed]
  34. T. A. Waigh, K. L. Kato, A. M. Donald, M. J. Gidley, C. J. Clarke, and C. Riekel, “Side-chain liquid-crystalline model for starch,” Starch52(12), 450–460 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited