OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 569–583

Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion

Agathe Puszka, Lionel Hervé, Anne Planat-Chrétien, Anne Koenig, Jacques Derouard, and Jean-Marc Dinten  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 569-583 (2013)
http://dx.doi.org/10.1364/BOE.4.000569


View Full Text Article

Enhanced HTML    Acrobat PDF (2207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how to apply the Mellin-Laplace transform to process time-resolved reflectance measurements for diffuse optical tomography. We illustrate this method on simulated signals incorporating the main sources of experimental noise and suggest how to fine-tune the method in order to detect the deepest absorbing inclusions and optimize their localization in depth, depending on the dynamic range of the measurement. To finish, we apply this method to measurements acquired with a setup including a femtosecond laser, photomultipliers and a time-correlated single photon counting board. Simulations and experiments are illustrated for a probe featuring the interfiber distance of 1.5 cm and show the potential of time-resolved techniques for imaging absorption contrast in depth with this geometry.

© 2013 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: October 19, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: January 8, 2013
Published: March 14, 2013

Citation
Agathe Puszka, Lionel Hervé, Anne Planat-Chrétien, Anne Koenig, Jacques Derouard, and Jean-Marc Dinten, "Time-domain reflectance diffuse optical tomography with Mellin-Laplace transform for experimental detection and depth localization of a single absorbing inclusion," Biomed. Opt. Express 4, 569-583 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008). [CrossRef] [PubMed]
  2. B. Montcel, R. Chabrier, and P. Poulet, “Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics,” Opt. Express14(25), 12271–12287 (2006). [CrossRef] [PubMed]
  3. J. C. Hebden, M. Varela, S. Magazov, N. Everdell, A. Gibson, J. Meek, and T. Austin, “Diffuse optical imaging of the newborn infant brain,” in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 503–505.
  4. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage31(4), 1426–1433 (2006). [CrossRef] [PubMed]
  5. J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J.-M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt.14(6), 064001 (2009). [CrossRef] [PubMed]
  6. J. Liu, A. Li, A. E. Cerussi, and B. J. Tromberg, “Parametric diffuse optical imaging in reflectance geometry,” IEEE J. Quantum Electron.16(3), 555–564 (2010). [CrossRef] [PubMed]
  7. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol.47(23), 4155–4166 (2002). [CrossRef] [PubMed]
  8. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol.47(23), 4131–4144 (2002). [CrossRef] [PubMed]
  9. N. Ducros, L. Hervé, A. Da Silva, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part I. Theoretical material,” Phys. Med. Biol.54(23), 7089–7105 (2009). [CrossRef] [PubMed]
  10. N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. Three-dimensional reconstructions,” Phys. Med. Biol.54(23), 7107–7119 (2009). [CrossRef] [PubMed]
  11. J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys.34(12), 4890–4900 (2007). [CrossRef] [PubMed]
  12. H. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007). [CrossRef] [PubMed]
  13. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol.44(7), 1699–1717 (1999). [CrossRef] [PubMed]
  14. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002). [CrossRef] [PubMed]
  15. L. Hervé, A. Puszka, A. Planat-Chrétien, and J.-M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt.51(25), 5978–5988 (2012). [CrossRef] [PubMed]
  16. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998). [CrossRef] [PubMed]
  17. S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt.34(31), 7395–7409 (1995). [CrossRef] [PubMed]
  18. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000). [CrossRef]
  19. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, and F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt.8(1), 87–92 (2003). [CrossRef] [PubMed]
  20. R. M. Yusof, J. C. Hebden, A. Gibson, N. Everdell, T. Austin, J. H. Meek, S. R. Arridge, J. S. Wyatt, and D. T. Delpy, “Validation of the use of homogenous reference phantoms for optical tomography of the neonatal brain,” Proc. SPIE4955, 6–11 (2003).
  21. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47(16), 2847–2861 (2002). [CrossRef] [PubMed]
  22. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express15(25), 16400–16412 (2007). [CrossRef] [PubMed]
  23. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium – phantom study,” Opto-Electron. Rev.18(1), 37–47 (2010). [CrossRef]
  24. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited