OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 584–595

Two-photon luminescence properties of gold nanorods

Tianyi Wang, David Halaney, Derek Ho, Marc D. Feldman, and Thomas E. Milner  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 584-595 (2013)
http://dx.doi.org/10.1364/BOE.4.000584


View Full Text Article

Enhanced HTML    Acrobat PDF (1586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gold nanorods can be internalized by macrophages (an important early cellular marker in atherosclerosis and cancer) and used as an imaging contrast agent for macrophage targeting. Objective of this study is to compare two-photon luminescence (TPL) properties of four aspect ratios of gold nanorods with surface plasmon resonance at 700, 756, 844 and 1060 nm respectively. TPL from single nanorods and Rhodamine 6G particles was measured using a laser-scanning TPL microscope. Nanorod TPL emission spectrum was recorded by a spectrometer. Quadratic dependence of luminescence intensity on excitation power (confirming a TPL process) was observed below a threshold (e.g., <1.6 mW), followed by photobleaching at higher power levels. Dependence of nanorod TPL intensity on excitation wavelength indicated that the two-photon action cross section (TPACS) is plasmon-enhanced. Largest TPACS of a single nanorod (12271 GM) was substantially larger than a single Rhodamine 6G particle (25 GM) at 760 nm excitation. Characteristics of nanorod TPL emission spectrum can be explained by plasmon-enhanced interband transition of gold. Comparison results of TPL brightness, TPACS and emission spectrum of nanorods can guide selection of optimal contrast agent for selected imaging applications.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: November 28, 2012
Revised Manuscript: January 26, 2013
Manuscript Accepted: January 27, 2013
Published: March 21, 2013

Citation
Tianyi Wang, David Halaney, Derek Ho, Marc D. Feldman, and Thomas E. Milner, "Two-photon luminescence properties of gold nanorods," Biomed. Opt. Express 4, 584-595 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, W. D. Rosamond, P. D. Sorlie, R. S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, J. Wylie-Rosett, V. L. Roger, M. B. Turner, and American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation123(4), e18–e209 (2011). [CrossRef] [PubMed]
  2. E. Falk, P. K. Shah, and V. Fuster, “Coronary plaque disruption,” Circulation92(3), 657–671 (1995). [CrossRef] [PubMed]
  3. F. D. Kolodgie, R. Virmani, A. P. Burke, A. Farb, D. K. Weber, R. Kutys, A. V. Finn, and H. K. Gold, “Pathologic assessment of the vulnerable human coronary plaque,” Heart90(12), 1385–1391 (2004). [CrossRef] [PubMed]
  4. N. B. Hao, M. H. Lü, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang, “Macrophages in tumor microenvironments and the progression of tumors,” Clin. Dev. Immunol.2012, 948098 (2012). [CrossRef] [PubMed]
  5. B. Ruffell, N. I. Affara, and L. M. Coussens, “Differential macrophage programming in the tumor microenvironment,” Trends Immunol.33(3), 119–126 (2012). [CrossRef] [PubMed]
  6. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir21(23), 10644–10654 (2005). [CrossRef] [PubMed]
  7. M. M. Arnida, A. Janát-Amsbury, C. M. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” Eur. J. Pharm. Biopharm.77(3), 417–423 (2011). [CrossRef] [PubMed]
  8. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008). [CrossRef] [PubMed]
  9. X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. Esparza-Coss, J. A. Bankson, G. Liang, Z.-P. Luo, K. Park, J. T. Markert, and C. Li, “Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy,” J Phys Chem C Nanomater Interfaces111(17), 6245–6251 (2007). [CrossRef] [PubMed]
  10. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond)2(5), 657–668 (2007). [CrossRef] [PubMed]
  11. M. Longmire, P. L. Choyke, and H. Kobayashi, “Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats,” Nanomedicine (Lond)3(5), 703–717 (2008). [CrossRef] [PubMed]
  12. L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano3(9), 2686–2696 (2009). [CrossRef] [PubMed]
  13. T. Wang, J. J. Mancuso, S. M. Kazmi, J. Dwelle, V. Sapozhnikova, B. Willsey, L. L. Ma, J. Qiu, X. Li, A. K. Dunn, K. P. Johnston, M. D. Feldman, and T. E. Milner, “Combined two-photon luminescence microscopy and OCT for macrophage detection in the hypercholesterolemic rabbit aorta using plasmonic gold nanorose,” Lasers Surg. Med.44(1), 49–59 (2012). [CrossRef] [PubMed]
  14. T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small4(1), 153–159 (2008). [CrossRef] [PubMed]
  15. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006). [CrossRef] [PubMed]
  16. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett.22(5), 185–187 (1969). [CrossRef]
  17. J. Zheng, C. Zhang, and R. M. Dickson, “Highly fluorescent, water-soluble, size-tunable gold quantum dots,” Phys. Rev. Lett.93(7), 077402–077405 (2004). [CrossRef] [PubMed]
  18. G. Wang, T. Huang, R. W. Murray, L. Menard, and R. G. Nuzzo, “Near-IR luminescence of monolayer-protected metal clusters,” J. Am. Chem. Soc.127(3), 812–813 (2005). [CrossRef] [PubMed]
  19. J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys.108(21), 9137–9143 (1998). [CrossRef]
  20. Y. Fang, W. S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano6(8), 7177–7184 (2012). [CrossRef] [PubMed]
  21. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics2(3), 107–118 (2007). [CrossRef]
  22. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res.34(4), 257–264 (2001). [CrossRef] [PubMed]
  23. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402–077405 (2002). [CrossRef] [PubMed]
  24. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000). [CrossRef]
  25. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B103(16), 3073–3077 (1999). [CrossRef]
  26. S. S. Verma and J. S. Sekhon, “Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod,” J. Opt.41(2), 89–93 (2012). [CrossRef]
  27. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res.41(12), 1578–1586 (2008). [CrossRef] [PubMed]
  28. E. T. Castellana, R. C. Gamez, M. E. Gómez, and D. H. Russell, “Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry,” Langmuir26(8), 6066–6070 (2010). [CrossRef] [PubMed]
  29. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  30. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009). [CrossRef] [PubMed]
  31. T. Y. Ohulchanskyy, I. Roy, K. T. Yong, H. E. Pudavar, and P. N. Prasad, “High-resolution light microscopy using luminescent nanoparticles,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(2), 162–175 (2010). [CrossRef] [PubMed]
  32. D. Nagesha, G. S. Laevsky, P. Lampton, R. Banyal, C. Warner, C. DiMarzio, and S. Sridhar, “In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles,” Int. J. Nanomedicine2(4), 813–819 (2007). [PubMed]
  33. Y. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt.15(2), 020504 (2010). [CrossRef] [PubMed]
  34. C. L. Chen, L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen, “In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons,” Biomaterials31(14), 4104–4112 (2010). [CrossRef] [PubMed]
  35. H. Okamoto and K. Imura, “Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles,” J. Mater. Chem.16(40), 3920–3928 (2006). [CrossRef]
  36. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005). [CrossRef] [PubMed]
  37. W. H. Ni, X. S. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano2(4), 677–686 (2008). [CrossRef] [PubMed]
  38. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996). [CrossRef]
  39. R. Gans, “Form of ultramicroscopic particles of silver,” Ann. Phys.47(10), 270–284 (1915). [CrossRef]
  40. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt.37(31), 7352–7356 (1998). [CrossRef] [PubMed]
  41. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  42. S. Eustis and M. A. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B109(34), 16350–16356 (2005). [CrossRef] [PubMed]
  43. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975). [CrossRef]
  44. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009). [CrossRef]
  45. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B109(43), 20331–20338 (2005). [CrossRef] [PubMed]
  46. C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett.5(2), 301–304 (2005). [CrossRef] [PubMed]
  47. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000). [CrossRef]
  48. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005). [CrossRef] [PubMed]
  49. K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009). [CrossRef]
  50. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H. J. Eisler, “Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation,” Nanoscale2(6), 1018–1020 (2010). [CrossRef] [PubMed]
  51. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003). [CrossRef]
  52. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. Von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004). [CrossRef]
  53. R. E. Hummel, Electronic Properties of Materials, 4th ed. (Springer, New York, 2011), pp. 37–61.
  54. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited