OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 614–618

Optical fiber light source directs neurite growth

Forrest Jesse, Zhenjiang Miao, Li Zhao, Yao Chen, and Yuan Yuan Lv  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 614-618 (2013)
http://dx.doi.org/10.1364/BOE.4.000614


View Full Text Article

Enhanced HTML    Acrobat PDF (1637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Guiding the growth of a neurite by directing ~800 nm laser light to the leading edge of the neurite's growing region can be accomplished by controlling the position and direction in three dimensional space of a tapered optical fiber through which the light is projected. We control the position, angle and power of the laser beam to direct the growth of actin accumulations in neurites which affects their mobility.

© 2013 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(140.0140) Lasers and laser optics : Lasers and laser optics
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Cell Studies

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 18, 2013
Published: March 28, 2013

Citation
Forrest Jesse, Zhenjiang Miao, Li Zhao, Yao Chen, and Yuan Yuan Lv, "Optical fiber light source directs neurite growth," Biomed. Opt. Express 4, 614-618 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-614


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Koch, T. Betz, A. Ehrlicher, M. Gogler, B. Stuhrmann, and J. Kas, “Optical control of neuronal growth,” Proc. SPIE5514, 428–436 (2004). [CrossRef]
  2. C. E. Graves, R. G. McAllister, W. J. Rosoff, and J. S. Urbach, “Optical neuronal guidance in three-dimensional matrices,” J. Neurosci. Methods179(2), 278–283 (2009). [CrossRef] [PubMed]
  3. A. Higuchi, H. Kitamura, K. Shishimine, S. Konishi, B. O. Yoon, and M. Hara, “Visible light is able to regulate neurite outgrowth,” J. Biomater. Sci. Polym. Ed.14(12), 1377–1388 (2003). [CrossRef] [PubMed]
  4. J. J. Anders, R. C. Borke, S. K. Woolery, and W. P. Van de Merwe, “Low power laser irradiation alters the rate of regeneration of the rat facial nerve,” Lasers Surg. Med.13(1), 72–82 (1993). [CrossRef] [PubMed]
  5. A. Higuchi, T. Watanabe, Y. Matsubara, Y. Matsuoka, and S. Hayashi, “Regulation of neurite outgrowth by intermittent irradiation of visible light,” J. Phys. Chem. B109(21), 11033–11036 (2005). [CrossRef] [PubMed]
  6. A. Higuchi, T. Watanabe, Y. Noguchi, Y. Chang, W. Y. Chen, and Y. Matsuoka, “Visible light regulates neurite outgrowth of nerve cells,” Cytotechnology54(3), 181–188 (2007). [CrossRef] [PubMed]
  7. A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Kas, “Guiding neuronal growth with light,” Proc. Natl. Acad. Sci. U.S.A.99(25), 16024–16028 (2002). [CrossRef] [PubMed]
  8. Y. Wollman, S. Rochkind, and R. Simantov, “Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells,” Neurol. Res.18(5), 467–470 (1996). [PubMed]
  9. T. Betz, D. Koch, D. Lim, and J. A. Käs, “Stochastic actin polymerization and steady retrograde flow determine growth cone advancement,” Biophys. J.96(12), 5130–5138 (2009). [CrossRef] [PubMed]
  10. A. Ehrlicher, T. Betz, B. Stuhrmann, M. Gögler, D. Koch, K. Franze, Y. Lu, and J. Käs, “Optical neuronal guidance,” Methods Cell Biol.83, 495–520 (2007). [CrossRef] [PubMed]
  11. V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs, “Directed actin polymerization is the driving force for epithelial cell-cell adhesion,” Cell100(2), 209–219 (2000). [CrossRef] [PubMed]
  12. Chinese Academy of Medical Sciences, Institute for Experimental Animal Research.
  13. Peking Union Medical Institute Cell-Bank F. Wang atPeking Union Medical Institute.
  14. F. Jesse, Z. J. Miao, L. Zhao, Y. Chen, and Y. Y. Lv, “OSA2012-11 image sequences and data,” http://jesse.org/OSA2012-11/
  15. Corning Incorporated, “Corning® ClearCurve® Multimode Optical Fiber Product information,” http://www.corning.com/assets/0/433/573/583/9F39014A-1475-4F63-A9A5-946B2DD39D69.pdf
  16. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt.35(9), 1566–1573 (1996). [CrossRef] [PubMed]
  17. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19(3), 677–715 (1990). [CrossRef]
  18. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited