OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 619–634

Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT

Thomas Klein, Raphael André, Wolfgang Wieser, Tom Pfeiffer, and Robert Huber  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 619-634 (2013)
http://dx.doi.org/10.1364/BOE.4.000619


View Full Text Article

Enhanced HTML    Acrobat PDF (6959 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence.

© 2013 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: January 9, 2013
Revised Manuscript: February 26, 2013
Manuscript Accepted: February 28, 2013
Published: March 28, 2013

Virtual Issues
May 16, 2013 Spotlight on Optics

Citation
Thomas Klein, Raphael André, Wolfgang Wieser, Tom Pfeiffer, and Robert Huber, "Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT," Biomed. Opt. Express 4, 619-634 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993). [PubMed]
  4. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995). [PubMed]
  5. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008). [CrossRef] [PubMed]
  6. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012). [CrossRef] [PubMed]
  7. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997). [CrossRef] [PubMed]
  8. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  9. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004). [CrossRef] [PubMed]
  10. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  11. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  12. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  13. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express18(2), 1406–1418 (2010). [CrossRef] [PubMed]
  14. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  15. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  16. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  17. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  18. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett.35(22), 3733–3735 (2010). [CrossRef] [PubMed]
  19. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  20. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19(21), 20930–20939 (2011). [CrossRef] [PubMed]
  21. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012). [CrossRef]
  22. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef] [PubMed]
  23. B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express17(5), 4134–4150 (2009). [CrossRef] [PubMed]
  24. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  25. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  26. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  27. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  28. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  29. C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express17(21), 18794–18807 (2009). [CrossRef] [PubMed]
  30. C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J. Biophotonics4(7-8), 552–558 (2011). [CrossRef] [PubMed]
  31. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  32. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  33. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  34. T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” Proc. SPIE8213, 82131E, 82131E-6 (2012). [CrossRef]
  35. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  36. A. Oldenburg, F. Toublan, K. Suslick, A. Wei, and S. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005). [CrossRef] [PubMed]
  37. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012). [CrossRef] [PubMed]
  38. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14568–14585 (2011). [CrossRef] [PubMed]
  39. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010). [CrossRef] [PubMed]
  40. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007). [CrossRef] [PubMed]
  41. Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt.3(4), 446–455 (1998). [CrossRef] [PubMed]
  42. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003). [CrossRef] [PubMed]
  43. G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012). [CrossRef] [PubMed]
  44. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol.42(7), 1427–1439 (1997). [CrossRef] [PubMed]
  45. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007). [CrossRef] [PubMed]
  46. M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Appl. Opt.49(1), 99–107 (2010). [CrossRef] [PubMed]
  47. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle Reduction in OCT using Massively-Parallel Detection and Frequency-Domain Ranging,” Opt. Express14(11), 4736–4745 (2006). [CrossRef] [PubMed]
  48. Y. Watanabe, H. Hasegawa, and S. Maeno, “Angular high-speed massively parallel detection spectral-domain optical coherence tomography for speckle reduction,” J. Biomed. Opt.16(6), 060504 (2011). [CrossRef] [PubMed]
  49. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by ‘path length encoded’ angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003). [CrossRef] [PubMed]
  50. H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512 (2009). [CrossRef] [PubMed]
  51. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  52. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008). [CrossRef] [PubMed]
  53. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  54. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007). [CrossRef] [PubMed]
  55. T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010). [CrossRef] [PubMed]
  56. Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14(2), 024016 (2009). [CrossRef] [PubMed]
  57. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007). [CrossRef] [PubMed]
  58. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012). [CrossRef] [PubMed]
  59. B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(3), 1486–1492 (2011). [CrossRef] [PubMed]
  60. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express16(9), 6486–6501 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited