OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 4 — Apr. 1, 2013
  • pp: 635–651

Phantom and mouse experiments of time-domain fluorescence tomography using total light approach

Shinpei Okawa, Akira Yano, Kazuki Uchida, Yohei Mitsui, Masaki Yoshida, Masashi Takekoshi, Andhi Marjono, Feng Gao, Yoko Hoshi, Ikuhiro Kida, Kazuto Masamoto, and Yukio Yamada  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 4, pp. 635-651 (2013)
http://dx.doi.org/10.1364/BOE.4.000635


View Full Text Article

Enhanced HTML    Acrobat PDF (2294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phantom and mouse experiments of time-domain fluorescence tomography were conducted to demonstrate the total light approach which was previously proposed by authors. The total light approach reduces the computation time to solve the forward model for light propagation. Time-resolved temporal profiles were acquired for cylindrical phantoms having single or double targets containing indocyanine green (ICG) solutions. The reconstructed images of ICG concentration reflected the true distributions of ICG concentration with a spatial resolution of about 10 mm. In vivo experiments were conducted using a mouse in which an ICG capsule was embedded beneath the skin in the abdomen. The reconstructed image of the ICG concentration again reflected the true distribution of ICG although artifacts due to autofluorescence appeared in the vicinity of the skin. The effectiveness of the total light approach was demonstrated by the phantom and mouse experiments.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: October 31, 2012
Revised Manuscript: January 12, 2013
Manuscript Accepted: February 14, 2013
Published: March 28, 2013

Citation
Shinpei Okawa, Akira Yano, Kazuki Uchida, Yohei Mitsui, Masaki Yoshida, Masashi Takekoshi, Andhi Marjono, Feng Gao, Yoko Hoshi, Ikuhiro Kida, Kazuto Masamoto, and Yukio Yamada, "Phantom and mouse experiments of time-domain fluorescence tomography using total light approach," Biomed. Opt. Express 4, 635-651 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-4-635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003). [CrossRef] [PubMed]
  2. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol.49(3), R13–R48 (2004). [CrossRef] [PubMed]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002). [CrossRef] [PubMed]
  4. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001). [CrossRef] [PubMed]
  5. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  6. Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer, C.-L. Tien, ed. (Begell House, 1995), Vol. 6, pp. 1–59.
  7. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002). [CrossRef] [PubMed]
  8. X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009). [CrossRef] [PubMed]
  9. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007). [CrossRef] [PubMed]
  10. M. Solomon, B. R. White, R. E. Nothdruft, W. Akers, G. Sudlow, A. T. Eggebrecht, S. Achilefu, and J. P. Culver, “Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging,” Biomed. Opt. Express2(12), 3267–3277 (2011). [CrossRef] [PubMed]
  11. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt.33(10), 1963–1974 (1994). [CrossRef] [PubMed]
  12. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt.36(10), 2260–2272 (1997). [CrossRef] [PubMed]
  13. M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010). [CrossRef] [PubMed]
  14. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003). [CrossRef] [PubMed]
  15. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007). [CrossRef] [PubMed]
  16. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008). [CrossRef] [PubMed]
  17. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  18. S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express13(7), 2263–2275 (2005). [CrossRef] [PubMed]
  19. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006). [CrossRef] [PubMed]
  20. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express16(17), 13104–13121 (2008). [CrossRef] [PubMed]
  21. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express16(19), 15268–15285 (2008). [CrossRef] [PubMed]
  22. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008). [CrossRef] [PubMed]
  23. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009). [CrossRef] [PubMed]
  24. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009). [CrossRef] [PubMed]
  25. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010). [CrossRef] [PubMed]
  26. A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett.28(12), 1019–1021 (2003). [CrossRef] [PubMed]
  27. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005). [CrossRef]
  28. F. Gao, A. Marjono, S. Okawa, and Y. Yamada, “Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function,” Opt. Rev.14(3), 131–138 (2007). [CrossRef]
  29. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994). [CrossRef] [PubMed]
  30. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993). [CrossRef]
  31. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes in C (Cambridge University Press, 1988).
  32. B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004). [CrossRef] [PubMed]
  33. E. M. Sevik-Muraca, A. Godavarthy, J. P. Houston, A. B. Thompson, and R. Roy, “Near-Infrared Imaging with Fluorescent Contrast Agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel Dekker, 2003), Chap. 14, pp. 475–476.
  34. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007). [CrossRef] [PubMed]
  35. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999). [CrossRef]
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000). [CrossRef]
  37. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express2(12), 3334–3348 (2011). [CrossRef] [PubMed]
  38. T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. A. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express20(18), 20427–20446 (2012). [CrossRef] [PubMed]
  39. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited