OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 5 — May. 1, 2013
  • pp: 696–708

In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy

F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 5, pp. 696-708 (2013)
http://dx.doi.org/10.1364/BOE.4.000696


View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi diameter single fiber reflectance (MDSFR) spectroscopy is a non-invasive optical technique based on using multiple fibers of different diameters to determine both the reduced scattering coefficient (μs′) and a parameter γ that is related to the angular distribution of scattering, where γ = (1-g2)/(1-g1) and g1 and g2 the first and second moment of the phase function, respectively. Here we present the first in vivo MDSFR measurements of μs′(λ) and γ(λ) and their wavelength dependence. MDSFR is performed on nineteen mice in four tissue types including skin, liver, normal tongue and in an orthotopic oral squamous cell carcinoma. The wavelength-dependent slope of μs′(λ) (scattering power) is significantly higher for tongue and skin than for oral cancer and liver. The reduced scattering coefficient at 800 nm of oral cancer is significantly higher than of normal tongue and liver. Gamma generally increases with increasing wavelength; for tumor it increases monotonically with wavelength, while for skin, liver and tongue γ(λ) reaches a plateau or even decreases for longer wavelengths. The mean γ(λ) in the wavelength range 400-850 nm is highest for liver (1.87 ± 0.07) and lowest for skin (1.37 ± 0.14). Gamma of tumor and normal tongue falls in between these values where tumor exhibits a higher average γ(λ) (1.72 ± 0.09) than normal tongue (1.58 ± 0.07). This study shows the potential of using light scattering spectroscopy to optically characterize tissue in vivo.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6550) Spectroscopy : Spectroscopy, visible
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: December 19, 2012
Revised Manuscript: February 20, 2013
Manuscript Accepted: February 23, 2013
Published: April 9, 2013

Citation
F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, "In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy," Biomed. Opt. Express 4, 696-708 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-5-696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Reif, O. A’Amar, I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  2. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  3. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  4. H. Tian, Y. Liu, L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett. 31(7), 933–935 (2006). [CrossRef] [PubMed]
  5. F. Bevilacqua, C. Depeursinge, “Monte Carlo study of diffuse reflectance at source−detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999). [CrossRef]
  6. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. Sterenborg, D. J. Robinson, A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express 2(6), 1687–1702 (2011). [CrossRef] [PubMed]
  7. U. A. Gamm, S. C. Kanick, H. J. Sterenborg, D. J. Robinson, A. Amelink, “Quantification of the reduced scattering coefficient and phase-function-dependent parameter γ of turbid media using multidiameter single fiber reflectance spectroscopy: experimental validation,” Opt. Lett. 37(11), 1838–1840 (2012). [CrossRef] [PubMed]
  8. S. C. Kanick, D. J. Robinson, H. J. Sterenborg, A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009). [CrossRef] [PubMed]
  9. S. C. Kanick, H. J. Sterenborg, A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009). [CrossRef] [PubMed]
  10. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett. 36(15), 2791–2793 (2011). [CrossRef] [PubMed]
  11. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium,” Opt. Lett. 36(15), 2997–2999 (2011). [CrossRef] [PubMed]
  12. U. A. Gamm, S. C. Kanick, H. J. Sterenborg, D. J. Robinson, A. Amelink, “Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis,” Biomed. Opt. Express 2(11), 3150–3166 (2011). [CrossRef] [PubMed]
  13. R. L. P. van Veen, W. Verkruysse, H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27(4), 246–248 (2002). [CrossRef] [PubMed]
  14. N. Rajaram, A. Gopal, X. Zhang, J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010). [CrossRef] [PubMed]
  15. T. Yokoi, A. Yamaguchi, T. Odajima, K. Furukawa, “Establishment and characterization of a human cell line derived from a squamous cell carcinoma of the tongue,” Tumor Res. 23, 43–57 (1988).
  16. F. Carlotti, M. Bazuine, T. Kekarainen, J. Seppen, P. Pognonec, J. A. Maassen, R. C. Hoeben, “Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes,” Mol. Ther. 9(2), 209–217 (2004). [CrossRef] [PubMed]
  17. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001). [CrossRef] [PubMed]
  18. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16(9), 097006 (2011). [CrossRef] [PubMed]
  19. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010). [CrossRef] [PubMed]
  20. J. D. Rogers, I. R. Capoğlu, V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  21. A. Kim and B. C. Wilson, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2011), Chap. 8.
  22. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003). [CrossRef] [PubMed]
  23. J. Yi, V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett. 37(21), 4443–4445 (2012). [CrossRef] [PubMed]
  24. G. Hall, S. L. Jacques, K. W. Eliceiri, P. J. Campagnola, “Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient,” Biomed. Opt. Express 3(11), 2707–2719 (2012). [CrossRef] [PubMed]
  25. M. Xu, R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005). [CrossRef] [PubMed]
  26. A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012). [CrossRef] [PubMed]
  27. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999). [CrossRef] [PubMed]
  28. S. Chamot, E. Migacheva, O. Seydoux, P. Marquet, C. Depeursinge, “Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers,” Opt. Express 18(23), 23664–23675 (2010). [CrossRef] [PubMed]
  29. C. L. Hoy, U. A. Gamm, H. J. Sterenborg, D. J. Robinson, A. Amelink, “Use of a coherent fiber bundle for multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 3(10), 2452–2464 (2012). [CrossRef] [PubMed]
  30. B. C. Wilson, M. S. Patterson, L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited