OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 5 — May. 1, 2013
  • pp: 709–724

A generalized hybrid algorithm for bioluminescence tomography

Shengkun Shi and Heng Mao  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 5, pp. 709-724 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2604 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bioluminescence tomography (BLT) is a promising optical molecular imaging technique on the frontier of biomedical optics. In this paper, a generalized hybrid algorithm has been proposed based on the graph cuts algorithm and gradient-based algorithms. The graph cuts algorithm is adopted to estimate a reliable source support without prior knowledge, and different gradient-based algorithms are sequentially used to acquire an accurate and fine source distribution according to the reconstruction status. Furthermore, multilevel meshes for the internal sources are used to speed up the computation and improve the accuracy of reconstruction. Numerical simulations have been performed to validate this proposed algorithm and demonstrate its high performance in the multi-source situation even if the detection noises, optical property errors and phantom structure errors are involved in the forward imaging.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: February 21, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: March 29, 2013
Published: April 10, 2013

Shengkun Shi and Heng Mao, "A generalized hybrid algorithm for bioluminescence tomography," Biomed. Opt. Express 4, 709-724 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4, 235–260 (2002). [CrossRef] [PubMed]
  2. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16, 378–387 (2002). [CrossRef] [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23, 313–320 (2005). [CrossRef] [PubMed]
  4. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology229(P), 566 (2003).
  5. A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, “Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging,” Neoplasia2, 491–495 (2000). [CrossRef]
  6. M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nat. Rev. Drug Discovery2, 123–131 (2003). [CrossRef]
  7. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50, 4225–4241 (2005). [CrossRef] [PubMed]
  8. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51, 2045–2053 (2006). [CrossRef] [PubMed]
  9. G. Wang, H. Shen, Y. Liu, A. Cong, W. Cong, Y. Wang, and P. Dubey, “Digital spectral separation methods and systems for bioluminescence imaging,” Opt. Express16, 1719–1732 (2008). [CrossRef] [PubMed]
  10. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express14, 7801–7809 (2006). [CrossRef] [PubMed]
  11. X. Ma, J. Tian, C. Qin, X. Yang, B. Zhang, Z. Xue, X. Zhang, D. Han, D. Dong, and X. Liu, “Early detection of liver cancer based on bioluminescence tomography,” Appl. Opt.50, 1389–1395 (2011). [CrossRef] [PubMed]
  12. M. Jiang and G. Wang, “Image reconstruction for bioluminescence tomography,” Proc. SPIE5535, 335–351 (2004). [CrossRef]
  13. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express13, 6756–6771 (2005). [CrossRef] [PubMed]
  14. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50, 5421–5441 (2005). [CrossRef] [PubMed]
  15. M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement.” Opt. Express15, 11095–11116 (2007). [CrossRef] [PubMed]
  16. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol.53, 3921–3942 (2008). [CrossRef] [PubMed]
  17. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express17, 8062–8080 (2009). [CrossRef] [PubMed]
  18. B. Zhang, X. Yang, C. Qin, D. Liu, S. Zhu, J. Feng, L. Sun, K. Liu, D. Han, X. Ma, X. Zhang, J. Zhong, X. Li, X. Yang, and J. Tian, “A trust region method in adaptive finite element framework for bioluminescence tomography,” Opt. Express18, 6477–6491 (2010). [CrossRef] [PubMed]
  19. K. Liu, J. Tian, Y. Lu, C. Qin, X. Yang, S. Zhu, and X. Zhang, “A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations,” Opt. Express18, 3732–3745 (2010). [CrossRef] [PubMed]
  20. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys.31, 2289–2299 (2004). [CrossRef] [PubMed]
  21. Y. Lv, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, “Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation,” Phys. Med. Biol.52, 4497–4512 (2007). [CrossRef] [PubMed]
  22. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express16, 15640–15654 (2008). [CrossRef] [PubMed]
  23. M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” Biomed. Opt. Express1, 512–526 (2010). [CrossRef]
  24. M. A. Naser and M. S. Patterson, “Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region,” Biomed. Opt. Express2, 3179–3193 (2011). [CrossRef] [PubMed]
  25. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys.35, 4863–4871 (2008). [CrossRef] [PubMed]
  26. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express14, 8211–8223 (2006). [CrossRef] [PubMed]
  27. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Prob.15, R41–R93 (1999). [CrossRef]
  28. F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction (SIAM, 2001). [CrossRef]
  29. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt.34, 8026–8037 (1995). [CrossRef] [PubMed]
  30. M. Piana and M. Bertero, “Projected landweber method and preconditioning,” Inverse Prob.13, 441–463 (1997). [CrossRef]
  31. M. Jiang and G. Wang, “Convergence studies on iterative algorithms for image reconstruction,” IEEE Trans. Med. Imaging22, 569–579 (2003). [CrossRef] [PubMed]
  32. C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Prob.18, 441–453 (2002). [CrossRef]
  33. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic Press, 1981).
  34. Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Anal. Mach. Intell.26, 1124–1137 (2004). [CrossRef]
  35. V. Kolmogorov and R. Zabin, “What energy functions can be minimized via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell.26, 147–159 (2004). [CrossRef] [PubMed]
  36. P. L. Hammer, P. Hansen, and B. Simeone, “Roof duality, complementation and persistency in quadratic 0–1 optimization,” Math. Program.28, 121–155 (1984). [CrossRef]
  37. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision (Thompson Learning, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited