OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 5 — May. 1, 2013
  • pp: 725–731

Zirconia dental implants degradation by confocal Raman microspectroscopy: analytical simulation and experiments

Nadia Djaker, Claudine Wulfman, Michaël Sadoun, and Marc Lamy de la Chapelle  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 5, pp. 725-731 (2013)
http://dx.doi.org/10.1364/BOE.4.000725


View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning.

© 2013 OSA

OCIS Codes
(170.1850) Medical optics and biotechnology : Dentistry
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(180.1790) Microscopy : Confocal microscopy
(290.5860) Scattering : Scattering, Raman
(160.1435) Materials : Biomaterials

ToC Category:
Dentistry Applications

History
Original Manuscript: February 11, 2013
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 27, 2013
Published: April 12, 2013

Citation
Nadia Djaker, Claudine Wulfman, Michaël Sadoun, and Marc Lamy de la Chapelle, "Zirconia dental implants degradation by confocal Raman microspectroscopy: analytical simulation and experiments," Biomed. Opt. Express 4, 725-731 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-5-725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hisbergues, S. Vendeville, and P. Vendeville, “Zirconia: established facts and perspectives for a biomaterial in dental implantology,” J. Biomed. Mater. Res. B88B(2), 519–529 (2009). [CrossRef]
  2. C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial,” Biomaterials20(1), 1–25 (1999). [CrossRef] [PubMed]
  3. H. Luthy, F. Filser, O. Loeffel, M. Schumacher, L. J. Gauckler, and C. H. F. Hammerle, “Strength and reliability of four-unit all-ceramic posterior bridges,” Dent. Mater.21(10), 930–937 (2005). [CrossRef] [PubMed]
  4. J. S. Schley, N. Heussen, S. Reich, J. Fischer, K. Haselhuhn, and S. Wolfart, “Survival probability of zirconia-based fixed dental prostheses up to 5 yr: a systematic review of the literature,” Eur. J. Oral Sci.118(5), 443–450 (2010). [CrossRef] [PubMed]
  5. K. Kobayashi, H. Kuwajima, and T. Masaki, “Phase-change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging,” Solid State Ionics3–4 (AUG), 489–493 (1981). [CrossRef]
  6. S. S. Brown, D. D. Green, G. Pezzotti, T. K. Donaldson, and I. C. Clarke, “Possible triggers for phase transformation in zirconia hip balls,” J. Biomed. Mater. Res. B85B(2), 444–452 (2008). [CrossRef]
  7. J. A. Munoz-Tabares, E. Jimenez-Pique, and M. Anglada, “Subsurface evaluation of hydrothermal degradation of zirconia,” Acta Mater.59(2), 473–484 (2011). [CrossRef]
  8. H. Toraya, M. Yoshimura, and S. Somiya, “Quantitative-analysis of monoclicnic-stabilized cubic ZrO2 systems by X-ray-diffraction,” J. Am. Ceram. Soc.67(9), C183–C184 (1984). [CrossRef]
  9. S. Deville, L. Gremillard, J. Chevalier, and G. Fantozzi, “A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia,” J. Biomed. Mater. Res. B72B(2), 239–245 (2005). [CrossRef]
  10. C. Wulfman, N. Djaker, N. Dupont, D. Ruse, M. Sadoun, and M. Lamy de la Chapelle, “Raman spectroscopy evaluation of subsurface hydrothermal degradation of zirconia,” J. Am. Ceram. Soc.95(7), 2347–2351 (2012). [CrossRef]
  11. C. Wulfman, M. Sadoun, and M. Lamy de la Chapelle, “Interest of Raman spectroscopy for the study of dental material: the zirconia material example,” IRBM31(5–6), 257–262 (2010). [CrossRef]
  12. D. Casellas, F. L. Cumbrera, F. Sanchez-Bajo, W. Forsling, L. Llanes, and M. Anglada, “On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures,” J. Am. Ceram. Soc.21(6), 765–777 (2001). [CrossRef]
  13. J. A. Munoz-Tabares and M. J. Anglada, “Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy,” J. Am. Ceram. Soc.93(6), 1790–1795 (2010).
  14. J. Barbillat, P. Dhamelincourt, M. Delhaye, and E. Dasilva, “Raman confocal microprobing, imaging and fiber-optic remote sensing: a further step in molecular analysis,” J. Raman Spectrosc.25(1), 3–11 (1994). [CrossRef]
  15. G. Pezzotti and A. A. Porporati, “Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints,” J. Biomed. Opt.9(2), 372–384 (2004). [CrossRef] [PubMed]
  16. V. Presser, M. Keuper, C. Berthold, and K. G. Nickel, “Experimental determination of the Raman sampling depth in zirconia ceramics,” Appl. Spectrosc.63(11), 1288–1292 (2009). [CrossRef] [PubMed]
  17. G. Pezzotti, K. Yamada, A. A. Porporati, M. Kuntz, and K. Yamamoto, “Fracture toughness analysis of advanced ceramic composite for hip prosthesis,” J. Am. Ceram. Soc.92(8), 1817–1822 (2009). [CrossRef]
  18. A. Gallardo, S. Spells, R. Navarro, and H. Reinecke, “Confocal Raman microscopy: how to correct depth profiles considering diffraction and refraction effects,” J. Raman Spectrosc.38(7), 880–884 (2007). [CrossRef]
  19. A. M. Macdonald and A. S. Vaughan, “Numerical simulations of confocal Raman spectroscopic depth profiles of materials: a photon scattering approach,” J. Raman Spectrosc.38(5), 584–592 (2007). [CrossRef]
  20. S. L. Jacques, B. Wang, and R. Samatham, “Reflectance confocal microscopy of optical phantoms,” Biomed. Opt. Express3(6), 1162–1172 (2012).
  21. W. Song, J. Lee, and H. S. Kwon, “Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and experiments,” Opt. Express20(18), 20605–20622 (2012). [CrossRef] [PubMed]
  22. http://www.zeiss.de/C1256D18002CC306/0/F99A7F3E8944EEE3C1256E5C0045F68B/$file/60-1-0030_confocal-principles.pdf
  23. J. Salem and D. Zhu, Ceramic Coatings and Interfaces II, U. Schulz and H. T. Lin eds. (Wiley-Interscience, 2007).
  24. D. Wang, Y. Chen, and J. T. C. Liu, “A liquid optical phantom with tissue-like heterogeneities for confocal microscopy,” Biomed. Opt. Express3(12), 3153–3160 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited