OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 5 — May. 1, 2013
  • pp: 732–740

Chromatic confocal microscopy for multi-depth imaging of epithelial tissue

Cory Olsovsky, Ryan Shelton, Oscar Carrasco-Zevallos, Brian E. Applegate, and Kristen C. Maitland  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 5, pp. 732-740 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:

Original Manuscript: March 13, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 15, 2013
Published: April 16, 2013

Cory Olsovsky, Ryan Shelton, Oscar Carrasco-Zevallos, Brian E. Applegate, and Kristen C. Maitland, "Chromatic confocal microscopy for multi-depth imaging of epithelial tissue," Biomed. Opt. Express 4, 732-740 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Sources of contrast in confocal reflectance imaging,” Appl. Opt.35(19), 3441–3446 (1996). [CrossRef] [PubMed]
  2. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt.37(13), 2749–2754 (1998). [CrossRef] [PubMed]
  3. I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Quantum Electron.14(1), 10–18 (2008). [CrossRef]
  4. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt.38(34), 7133–7144 (1999). [CrossRef] [PubMed]
  5. C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express13(20), 8214–8221 (2005). [CrossRef] [PubMed]
  6. M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992). [CrossRef]
  7. J. Garzón, T. Gharbi, and J. Meneses, “Real time determination of the optical thickness and topography of tissues by chromatic confocal microscopy,” J. Opt. A, Pure Appl. Opt.10(10), 104028 (2008). [CrossRef]
  8. P. M. Lane, R. P. Elliott, and C. E. MacAulay, “Confocal microendoscopy with chromatic sectioning,” Proc. SPIE4959, 23–26 (2003). [CrossRef]
  9. H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt.33(10), 1838–1843 (1994). [CrossRef] [PubMed]
  10. M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning16, 187–192 (1994).
  11. K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004). [CrossRef] [PubMed]
  12. A. K. Ruprecht, T. F. Wiesendanger, and H. J. Tiziani, “Chromatic confocal microscopy with a finite pinhole size,” Opt. Lett.29(18), 2130–2132 (2004). [CrossRef] [PubMed]
  13. M. Vaishakh, “Optical sectioning in reciprocal fiber-optic based chromatic confocal microscope,” Optik (Stuttg.)123(16), 1450–1452 (2012). [CrossRef]
  14. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987). [CrossRef] [PubMed]
  15. T. Collier, P. Shen, B. de Pradier, K. B. Sung, R. Richards-Kortum, M. Follen, and A. Malpica, “Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation,” Opt. Express6(2), 40–48 (2000). [CrossRef] [PubMed]
  16. C. A. Yang, K. B. Shi, H. F. Li, Q. A. Xu, V. Gopalan, and Z. W. Liu, “Chromatic second harmonic imaging,” Opt. Express18(23), 23837–23843 (2010). [CrossRef] [PubMed]
  17. M. Strupler, E. D. Montigny, D. Morneau, and C. Boudoux, “Rapid spectrally encoded fluorescence imaging using a wavelength-swept source,” Opt. Lett.35(11), 1737–1739 (2010). [CrossRef] [PubMed]
  18. J. Novak and A. Miks, “Hyperchromats with linear dependence of longitudinal chromatic aberration on wavelength,” Optik (Stuttg.)116(4), 165–168 (2005). [CrossRef]
  19. ANSI, “American National Standard for Safe Use of Lasers” (Laser Institute of America, 2007).
  20. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006), p. 985.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (6466 KB)     
» Media 2: AVI (9060 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited