OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 5 — May. 1, 2013
  • pp: 741–759

A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media

Adam K. Glaser, Stephen C. Kanick, Rongxiao Zhang, Pedro Arce, and Brian W. Pogue  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 5, pp. 741-759 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2082 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a tissue optics plug-in that interfaces with the GEANT4/GAMOS Monte Carlo (MC) architecture, providing a means of simulating radiation-induced light transport in biological media for the first time. Specifically, we focus on the simulation of light transport due to the Čerenkov effect (light emission from charged particle’s traveling faster than the local speed of light in a given medium), a phenomenon which requires accurate modeling of both the high energy particle and subsequent optical photon transport, a dynamic coupled process that is not well-described by any current MC framework. The results of validation simulations show excellent agreement with currently employed biomedical optics MC codes, [i.e., Monte Carlo for Multi-Layered media (MCML), Mesh-based Monte Carlo (MMC), and diffusion theory], and examples relevant to recent studies into detection of Čerenkov light from an external radiation beam or radionuclide are presented. While the work presented within this paper focuses on radiation-induced light transport, the core features and robust flexibility of the plug-in modified package make it also extensible to more conventional biomedical optics simulations. The plug-in, user guide, example files, as well as the necessary files to reproduce the validation simulations described within this paper are available online at http://www.dartmouth.edu/optmed/research-projects/monte-carlo-software .

© 2013 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: February 5, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 9, 2013
Published: April 17, 2013

Virtual Issues
May 7, 2013 Spotlight on Optics

Adam K. Glaser, Stephen C. Kanick, Rongxiao Zhang, Pedro Arce, and Brian W. Pogue, "A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media," Biomed. Opt. Express 4, 741-759 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Čerenkov, “Visible light from pure liquids under the impact of γ-rays,” C. R. (Dokl.) Acad. Sci. URSS.2, 451–457 (1934).
  2. I. Frank and I. Tamm, “Coherent visible radiation of fast electrons passing through matter,” C. R. (Dokl.) Acad. Sci. URSS.14, 109–114 (1937).
  3. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009). [CrossRef] [PubMed]
  4. A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010). [CrossRef] [PubMed]
  5. H. G. Liu, G. Ren, Z. Miao, X. F. Zhang, X. D. Tang, P. Z. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE5(3), e9470 (2010). [CrossRef] [PubMed]
  6. G. S. Mitchell, R. K. Gill, D. L. Boucher, C. Li, and S. R. Cherry, “In vivo Cerenkov luminescence imaging: a new tool for molecular imaging,” Philos. Trans. R. Soc. London, Ser. A369(1955), 4605–4619 (2011). [CrossRef] [PubMed]
  7. C. Q. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010). [CrossRef] [PubMed]
  8. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express18(24), 24441–24450 (2010). [CrossRef] [PubMed]
  9. J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP3 method,” Ann. Biomed. Eng.39(6), 1728–1735 (2011). [CrossRef] [PubMed]
  10. J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011). [CrossRef] [PubMed]
  11. J. Axelsson, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment,” Opt. Express20(5), 5133–5142 (2012). [CrossRef] [PubMed]
  12. A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett.37(7), 1193–1195 (2012). [CrossRef] [PubMed]
  13. R. Zhang, A. Glaser, T. V. Esipova, S. C. Kanick, S. C. Davis, S. Vinogradov, D. Gladstone, and B. W. Pogue, “Cerenkov radiation emission and excited luminescence (CREL) sensitivity during external beam radiation therapy: Monte Carlo and tissue oxygenation phantom studies,” Biomed. Opt. Express3(10), 2381–2394 (2012). [CrossRef] [PubMed]
  14. R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010). [CrossRef] [PubMed]
  15. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002). [CrossRef] [PubMed]
  16. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates,” Biomed. Opt. Express1(1), 165–175 (2010). [CrossRef] [PubMed]
  17. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  18. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef]
  19. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A506(3), 250–303 (2003). [CrossRef]
  20. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. M. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. C. Williams, D. Wright, and H. Yoshida, “Geant4 developments and applications,” IEEE Trans. Nucl. Sci53(1), 270–278 (2006). [CrossRef]
  21. CERN, “Geant4 Physics Reference Manual,” URL: http://geant4.web.cern.ch/geant4/UserDocumentation
  22. J. F. Carrier, L. Archambault, L. Beaulieu, and R. Roy, “Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics,” Med. Phys.31(3), 484–492 (2004). [CrossRef] [PubMed]
  23. K. Amako, S. Guatelli, V. Ivanchencko, M. Maire, B. Mascialino, K. Murakami, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, L. Urban, and the Geant4 Collaboration, “Geant4 and its validation,” Nucl. Phys. B Proc. Suppl.150, 44–49 (2006). [CrossRef]
  24. P. Arce, P. Rato, M. Canadas, and J. I. Lagares, “GAMOS: A Geant4-based easy and flexible framework for nuclear medicine applications,” in Nuclear Science Symposium Conference Record, 2008, NSS '08 (IEEE, 2008), pp. 3162–3168. [CrossRef]
  25. M. Cañadas, P. Arce, and P. Rato Mendes, “Validation of a small-animal PET simulation using GAMOS: a GEANT4-based framework,” Phys. Med. Biol.56(1), 273–288 (2011). [CrossRef] [PubMed]
  26. L. J. Harkness, P. Arce, D. S. Judson, A. J. Boston, H. C. Boston, J. R. Cresswell, J. Dormand, M. Jones, P. J. Nolan, J. A. Sampson, D. P. Scraggs, A. Sweeney, I. Lazarus, and J. Simpson, “A Compton camera application for the GAMOS GEANT4-based framework,” Nucl. Instrum. Methods Phys. Res. A671, 29–39 (2012). [CrossRef]
  27. B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of Cerenkov light production efficiency from medical radionuclides,” PLoS ONE7(2), e31402 (2012). [CrossRef] [PubMed]
  28. J. V. Jelley, Čerenkov Radiation, and Its Applications (Pergamon Press, 1958).
  29. A. Roberts, “A new type of Cerenkov detector for the accurate measurement of particle velocity and direction,” Nucl. Instrum. Methods9(1), 55–66 (1960). [CrossRef]
  30. T. Ypsilantis, “Cerenkov ring imaging,” Phys. Scr.23(4A), 371–376 (1981). [CrossRef]
  31. D. M. Lowder, T. Miller, P. B. Price, A. Westphal, S. W. Barwick, F. Halzen, and R. Morse, “Observation of muons using the polar ice cap as a Cerenkov detector,” Nature353(6342), 331–333 (1991). [CrossRef]
  32. T. C. Weekes, H. Badran, S. D. Biller, I. Bond, S. Bradbury, J. Buckley, D. Carter-Lewis, M. Catanese, S. Criswell, W. Cui, P. Dowkontt, C. Duke, D. J. Fegan, J. Finley, L. Fortson, J. Gaidos, G. H. Gillanders, J. Grindlay, T. A. Hall, K. Harris, A. M. Hillas, P. Kaaret, M. Kertzman, D. Kieda, F. Krennrich, M. J. Lang, S. LeBohec, R. Lessard, J. Lloyd-Evans, J. Knapp, B. McKernan, J. McEnery, P. Moriarty, D. Muller, P. Ogden, R. Ong, D. Petry, J. Quinn, N. W. Reay, P. T. Reynolds, J. Rose, M. Salamon, G. Sembroski, R. Sidwell, P. Slane, N. Stanton, S. P. Swordy, V. V. Vassiliev, and S. P. Wakely, “VERITAS: the Very Energetic Radiation Imaging Telescope Array System,” Astropart. Phys.17(2), 221–243 (2002). [CrossRef]
  33. S. Fukuda, Y. Fukuda, T. Hayakawa, E. Ichihara, M. Ishitsuka, Y. Itow, T. Kajita, J. Kameda, K. Kaneyuki, S. Kasuga, K. Kobayashi, Y. Kobayashi, Y. Koshio, M. Miura, S. Moriyama, M. Nakahata, S. Nakayama, T. Namba, Y. Obayashi, A. Okada, M. Oketa, K. Okumura, T. Oyabu, N. Sakurai, M. Shiozawa, Y. Suzuki, Y. Takeuchi, T. Toshito, Y. Totsuka, S. Yamada, S. Desai, M. Earl, J. T. Hong, E. Kearns, M. Masuzawa, M. D. Messier, J. L. Stone, L. R. Sulak, C. W. Walter, W. Wang, K. Scholberg, T. Barszczak, D. Casper, D. W. Liu, W. Gajewski, P. G. Halverson, J. Hsu, W. R. Kropp, S. Mine, L. R. Price, F. Reines, M. Smy, H. W. Sobel, M. R. Vagins, K. S. Ganezer, W. E. Keig, R. W. Ellsworth, S. Tasaka, J. W. Flanagan, A. Kibayashi, J. G. Learned, S. Matsuno, V. J. Stenger, Y. Hayato, T. Ishii, A. Ichikawa, J. Kanzaki, T. Kobayashi, T. Maruyama, K. Nakamura, Y. Oyama, A. Sakai, M. Sakuda, O. Sasaki, S. Echigo, T. Iwashita, M. Kohama, A. T. Suzuki, M. Hasegawa, T. Inagaki, I. Kato, H. Maesaka, T. Nakaya, K. Nishikawa, S. Yamamoto, T. J. Haines, B. K. Kim, R. Sanford, R. Svoboda, E. Blaufuss, M. L. Chen, Z. Conner, J. A. Goodman, E. Guillian, G. W. Sullivan, D. Turcan, A. Habig, M. Ackerman, F. Goebel, J. Hill, C. K. Jung, T. Kato, D. Kerr, M. Malek, K. Martens, C. Mauger, C. McGrew, E. Sharkey, B. Viren, C. Yanagisawa, W. Doki, S. Inaba, K. Ito, M. Kirisawa, M. Kitaguchi, C. Mitsuda, K. Miyano, C. Saji, M. Takahata, M. Takahashi, K. Higuchi, Y. Kajiyama, A. Kusano, Y. Nagashima, K. Nitta, M. Takita, T. Yamaguchi, M. Yoshida, H. I. Kim, S. B. Kim, J. Yoo, H. Okazawa, M. Etoh, K. Fujita, Y. Gando, A. Hasegawa, T. Hasegawa, S. Hatakeyama, K. Inoue, K. Ishihara, T. Iwamoto, M. Koga, I. Nishiyama, H. Ogawa, J. Shirai, A. Suzuki, T. Takayama, F. Tsushima, M. Koshiba, Y. Ichikawa, T. Hashimoto, Y. Hatakeyama, M. Koike, T. Horiuchi, M. Nemoto, K. Nishijima, H. Takeda, H. Fujiyasu, T. Futagami, H. Ishino, Y. Kanaya, M. Morii, H. Nishihama, H. Nishimura, T. Suzuki, Y. Watanabe, D. Kielczewska, U. Golebiewska, H. G. Berns, S. B. Boyd, R. A. Doyle, J. S. George, A. L. Stachyra, L. L. Wai, R. J. Wilkes, K. K. Young, and H. Kobayashi, “The Super-Kamiokande detector,” Nucl. Instrum. Methods Phys. Res. A501(2-3), 418–462 (2003). [CrossRef]
  34. S. A. Prahl, “Light transport in tissue,” doctoral dissertation (The University of Texas at Austin, 1988).
  35. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  36. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983). [CrossRef] [PubMed]
  37. E. Alerstam, “Optical spectroscopy of turbid media: time-domain measurements and accelerated MC modeling,” doctoral thesis (Lund University, 2011).
  38. H. C. van de Hulst, Multiple Light Scattering (Academic Press, 1980), Vol. II.
  39. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIEIS 5, 102–111 (1989).
  40. R. G. Giovanelli, “Reflection by semi-infinite diffusers,” Opt. Acta (Lond.)2(4), 153–162 (1955). [CrossRef]
  41. W. Chen and J. Zhang, “Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment,” J. Nanosci. Nanotechnol.6(4), 1159–1166 (2006). [CrossRef] [PubMed]
  42. I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt.12(1), 014030 (2007). [CrossRef] [PubMed]
  43. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett.26(17), 1335–1337 (2001). [CrossRef] [PubMed]