OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 822–830

Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay

Enrique J. Fernández, Christina Schwarz, Pedro M. Prieto, Silvestre Manzanera, and Pablo Artal  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 6, pp. 822-830 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Some of the different currently applied approaches that correct presbyopia may reduce stereovision. In this work, stereo-acuity was measured for two methods: (1) monovision and (2) small aperture inlay in one eye. When performing the experiment, a prototype of a binocular adaptive optics vision analyzer was employed. The system allowed simultaneous measurement and manipulation of the optics in both eyes of a subject. The apparatus incorporated two programmable spatial light modulators: one phase-only device using liquid crystal on silicon technology for wavefront manipulation and one intensity modulator for controlling the exit pupils. The prototype was also equipped with a stimulus generator for creating retinal disparity based on two micro-displays. The three-needle test was programmed for characterizing stereo-acuity. Subjects underwent a two-alternative forced-choice test. The following cases were tested for the stimulus placed at distance: (a) natural vision; (b) 1.5 D monovision; (c) 0.75 D monovision; (d) natural vision and small pupil; (e) 0.75 D monovision and small pupil. In all cases the standard pupil diameter was 4 mm and the small pupil diameter was 1.6 mm. The use of a small aperture significantly reduced the negative impact of monovision on stereopsis. The results of the experiment suggest that combining micro-monovision with a small aperture, which is currently being implemented as a corneal inlay, can yield values of stereoacuity close to those attained under normal binocular vision.

© 2013 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis

ToC Category:
Vision and Visual Optics

Original Manuscript: January 25, 2013
Revised Manuscript: March 17, 2013
Manuscript Accepted: May 2, 2013
Published: May 8, 2013

Enrique J. Fernández, Christina Schwarz, Pedro M. Prieto, Silvestre Manzanera, and Pablo Artal, "Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay," Biomed. Opt. Express 4, 822-830 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. W. Evans, “Monovision: a review,” Ophthalmic Physiol. Opt.27(5), 417–439 (2007). [CrossRef] [PubMed]
  2. O. F. Yilmaz, S. Bayraktar, A. Agca, B. Yilmaz, M. B. McDonald, and C. van de Pol, “Intracorneal inlay for the surgical correction of presbyopia,” J. Cataract Refract. Surg.34(11), 1921–1927 (2008). [CrossRef] [PubMed]
  3. O. Seyeddain, W. Riha, M. Hohensinn, G. Nix, A. K. Dexl, and G. Grabner, “Refractive surgical correction of presbyopia with the AcuFocus small aperture corneal inlay: two-year follow-up,” J. Refract. Surg.26(10), 707–715 (2010). [CrossRef] [PubMed]
  4. O. F. Yılmaz, N. Alagöz, G. Pekel, E. Azman, E. F. Aksoy, H. Cakır, E. Bozkurt, and A. Demirok, “Intracorneal inlay to correct presbyopia: Long-term results,” J. Cataract Refract. Surg.37(7), 1275–1281 (2011). [CrossRef] [PubMed]
  5. G. O. Waring, “Correction of presbyopia with a small aperture corneal inlay,” J. Refract. Surg.27(11), 842–845 (2011). [CrossRef] [PubMed]
  6. A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, W. Hitzl, and G. Grabner, “Reading performance after implantation of a modified corneal inlay design for the surgical correction of presbyopia: 1-year follow-up,” Am. J. Ophthalmol.153(5), 994–1001 (2012). [CrossRef] [PubMed]
  7. J. Tabernero and P. Artal, “Optical modeling of a corneal inlay in real eyes to increase depth of focus: optimum centration and residual defocus,” J. Cataract Refract. Surg.38(2), 270–277 (2012). [CrossRef] [PubMed]
  8. A. R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye (Lond.)10(2), 233–238 (1996). [CrossRef] [PubMed]
  9. A. R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Vis. Sci.51(4), 2019–2023 (2010). [CrossRef] [PubMed]
  10. L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res.157(3), 383–390 (2004). [CrossRef] [PubMed]
  11. L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res.171(1), 99–115 (2006). [CrossRef] [PubMed]
  12. R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, 1983).
  13. I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis, Oxford Psychology Series No. 29 (Oxford University Press, 1995).
  14. J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Vis. Sci.26(5), 741–750 (1985). [PubMed]
  15. C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res.29(7), 837–847 (1989). [CrossRef] [PubMed]
  16. L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception26(9), 1121–1136 (1997). [CrossRef] [PubMed]
  17. D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception17(4), 483–495 (1988). [CrossRef] [PubMed]
  18. G. E. Legge and G. Yuanchao, “Stereopsis and contrast,” Vision Res.29(8), 989–1004 (1989). [CrossRef] [PubMed]
  19. I. C. Wood, “Stereopsis with spatially-degraded images,” Ophthalmic Physiol. Opt.3(3), 337–340 (1983). [CrossRef] [PubMed]
  20. T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefes Arch. Clin. Exp. Ophthalmol.228(4), 310–315 (1990). [CrossRef] [PubMed]
  21. J. R. Jiménez, J. J. Castro, E. Hita, and R. G. Anera, “Upper disparity limit after LASIK,” J. Opt. Soc. Am. A25(6), 1227–1231 (2008). [CrossRef] [PubMed]
  22. J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt.29(3), 370–374 (2009). [CrossRef] [PubMed]
  23. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg.18(5), S634–S638 (2002). [PubMed]
  24. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett.34(17), 2628–2630 (2009). [CrossRef] [PubMed]
  25. E. J. Fernández, P. M. Prieto, and P. Artal, “Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations,” J. Opt. Soc. Am. A27(11), A48–A55 (2010). [CrossRef] [PubMed]
  26. J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci.52(8), 5273–5277 (2011). [CrossRef] [PubMed]
  27. D. Rose, R. Blake, and D. L. Halpern, “Disparity range for binocular summation,” Invest. Ophthalmol. Vis. Sci.29(2), 283–290 (1988). [PubMed]
  28. C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett.36(24), 4779–4781 (2011). [CrossRef] [PubMed]
  29. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express12(17), 4059–4071 (2004). [CrossRef] [PubMed]
  30. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express17(13), 11013–11025 (2009). [CrossRef] [PubMed]
  31. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express13(2), 400–409 (2005). [CrossRef] [PubMed]
  32. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express16(26), 21199–21208 (2008). [CrossRef] [PubMed]
  33. G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Vis. Sci.19(7), 802–809 (1980). [PubMed]
  34. C. W. McMonnies, “Monocular fogging in contact lens practice,” Aust. J. Optom.57, 28–32 (1974).
  35. P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, “Effect of the polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A19(4), 809–814 (2002). [CrossRef] [PubMed]
  36. B. P. Wong, R. L. Woods, and E. Peli, “Stereoacuity at distance and near,” Optom. Vis. Sci.79(12), 771–778 (2002). [CrossRef] [PubMed]
  37. G. Westheimer and S. P. McKee, “What prior uniocular processing is necessary for stereopsis?” Invest. Ophthalmol. Vis. Sci.18(6), 614–621 (1979). [PubMed]
  38. G. Westheimer and S. P. McKee, “Stereoscopic acuity with defocused and spatially filtered retinal images,” J. Opt. Soc. Am. A70(7), 772–778 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited