OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 831–841

Simultaneous spatial and temporal focusing for tissue ablation

Erica Block, Michael Greco, Dawn Vitek, Omid Masihzadeh, David A. Ammar, Malik Y. Kahook, Naresh Mandava, Charles Durfee, and Jeff Squier  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 6, pp. 831-841 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simultaneous spatial temporal focusing (SSTF) is used to deliver microjoule femtosecond pulses with low numerical aperture geometries (<0.05 NA) with characteristics that are significantly improved compared to standard focusing paradigms. Nonlinear effects that would normally result in focal plane shifts and focal spot distortion are mitigated when SSTF is employed. As a result, it is shown that SSTF will enable surgical implementations that are presently inhibited.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Laser-Tissue Interactions

Original Manuscript: February 21, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: May 6, 2013
Published: May 8, 2013

Erica Block, Michael Greco, Dawn Vitek, Omid Masihzadeh, David A. Ammar, Malik Y. Kahook, Naresh Mandava, Charles Durfee, and Jeff Squier, "Simultaneous spatial and temporal focusing for tissue ablation," Biomed. Opt. Express 4, 831-841 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pronko, S. Dutta, J. Squier, V. Rudd, D. Du, and G. Mourou, “Machining of submicron holes using a femtosecond laser at 800 nm,” Opt. Commun.114(1-2), 106–110 (1995). [CrossRef]
  2. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef] [PubMed]
  3. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996). [CrossRef] [PubMed]
  4. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999). [CrossRef]
  5. R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg.14(5), 541–548 (1998). [PubMed]
  6. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  7. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  8. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett.35(7), 1106–1108 (2010). [CrossRef] [PubMed]
  9. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express18(17), 18086–18094 (2010). [CrossRef] [PubMed]
  10. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express18(24), 24673–24678 (2010). [CrossRef] [PubMed]
  11. R. Kammel, R. Ackermann, A. Tünnermann, and S. Nolte, “Pump-probe investigation of fs-LIOB in water by simultaneous spatial and temporal focusing,” Proc. SPIE8611, 86110A, 86110A-7 (2013). [CrossRef]
  12. C. G. Durfee, M. Greco, E. Block, D. Vitek, and J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express20(13), 14244–14259 (2012). [CrossRef] [PubMed]
  13. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975). [CrossRef]
  14. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A24(6), 1562–1568 (2007). [CrossRef] [PubMed]
  15. L. Hoffart, P. Lassonde, F. Légaré, F. Vidal, N. Sanner, O. Utéza, M. Sentis, J. C. Kieffer, and I. Brunette, “Surface ablation of corneal stroma with few-cycle laser pulses at 800 nm,” Opt. Express19(1), 230–240 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (669 KB)     
» Media 2: MP4 (714 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited