OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 852–867

Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

Anja Hansen, Romain Géneaux, Axel Günther, Alexander Krüger, and Tammo Ripken  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 6, pp. 852-867 (2013)
http://dx.doi.org/10.1364/BOE.4.000852


View Full Text Article

Enhanced HTML    Acrobat PDF (3557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

© 2013 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.3350) Vision, color, and visual optics : Vision - laser damage
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Laser-Tissue Interactions

History
Original Manuscript: January 24, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 13, 2013
Published: May 10, 2013

Citation
Anja Hansen, Romain Géneaux, Axel Günther, Alexander Krüger, and Tammo Ripken, "Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics," Biomed. Opt. Express 4, 852-867 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-6-852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197.e2 (2009). [CrossRef] [PubMed]
  2. C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005). [CrossRef] [PubMed]
  3. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg.32(12), 2064–2074 (2006). [CrossRef] [PubMed]
  4. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999). [CrossRef] [PubMed]
  5. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997). [CrossRef]
  6. A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis.11(7), 1–21 (2011). [PubMed]
  7. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  8. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975). [CrossRef]
  9. M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989). [CrossRef]
  10. F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).
  11. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995). [CrossRef]
  12. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010). [PubMed]
  13. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011). [CrossRef] [PubMed]
  14. M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007). [CrossRef]
  15. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010). [CrossRef] [PubMed]
  16. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005). [CrossRef] [PubMed]
  17. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997). [CrossRef] [PubMed]
  18. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999). [CrossRef]
  19. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  20. C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002). [CrossRef]
  21. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002). [CrossRef] [PubMed]
  22. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996). [CrossRef] [PubMed]
  23. N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010). [CrossRef] [PubMed]
  24. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009). [CrossRef] [PubMed]
  25. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001). [CrossRef] [PubMed]
  26. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003). [CrossRef]
  27. A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994). [PubMed]
  28. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007). [CrossRef] [PubMed]
  29. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995). [CrossRef]
  30. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002). [CrossRef] [PubMed]
  31. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997). [CrossRef]
  32. C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005). [CrossRef] [PubMed]
  33. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  34. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008). [CrossRef] [PubMed]
  35. G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000). [CrossRef]
  36. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption, coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999). [CrossRef]
  37. L. A. Crum, “Acoustic cavitation series: part five rectified diffusion,” Ultrasonics22(5), 215–223 (1984). [CrossRef]
  38. J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004). [CrossRef] [PubMed]
  39. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), Chap. 8.
  40. K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure,” Phys. Fluids19(7), 072106 (2007). [CrossRef]
  41. F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica216(2), 73–84 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited