OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 885–899

Simple buffers for 3D STORM microscopy

Nicolas Olivier, Debora Keller, Vinoth Sundar Rajan, Pierre Gönczy, and Suliana Manley  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 6, pp. 885-899 (2013)
http://dx.doi.org/10.1364/BOE.4.000885


View Full Text Article

Enhanced HTML    Acrobat PDF (4249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

3D STORM is one of the leading methods for super-resolution imaging, with resolution down to 10 nm in the lateral direction, and 30–50 nm in the axial direction. However, there is one important requirement to perform this type of imaging: making dye molecules blink. This usually relies on the utilization of complex buffers, containing different chemicals and sensitive enzymatic systems, limiting the reproducibility of the method. We report here that the commercial mounting medium Vectashield can be used for STORM of Alexa-647, and yields images comparable or superior to those obtained with more complex buffers, especially for 3D imaging. We expect that this advance will promote the versatile utilization of 3D STORM by removing one of its entry barriers, as well as provide a more reproducible way to compare optical setups and data processing algorithms.

OCIS Codes
(100.6640) Image processing : Superresolution
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 19, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: April 28, 2013
Published: May 14, 2013

Citation
Nicolas Olivier, Debora Keller, Vinoth Sundar Rajan, Pierre Gönczy, and Suliana Manley, "Simple buffers for 3D STORM microscopy," Biomed. Opt. Express 4, 885-899 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-6-885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006). [CrossRef] [PubMed]
  2. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3, 793–796 (2006). [CrossRef] [PubMed]
  4. M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, “Carbocyanine dyes as efficient reversible single-molecule optical switch,” J. Am. Chem. Soc.127, 3801–3806 (2005). [CrossRef] [PubMed]
  5. M. Bates, T. R. Blosser, and X. Zhuang, “Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett.94, 108101 (2005). [CrossRef] [PubMed]
  6. M. Heilemann, S. van de Linde, M. Schuttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, and M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed.47, 6172–6176 (2008). [CrossRef]
  7. G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien, and X. Zhuang, “Photoswitching mechanism of cyanine dyes,” J. Am. Chem. Soc.131, 18192–18193 (2009). [CrossRef] [PubMed]
  8. C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc.130, 16840–16841 (2008). [CrossRef] [PubMed]
  9. S. Van De Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6, 991–1009 (2011). [CrossRef] [PubMed]
  10. X. Shi, J. Lim, and T. Ha, “Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe,” Anal. Chem.82, 6132–6138 (2010). [CrossRef] [PubMed]
  11. J. Vogelsang, T. Cordes, and P. Tinnefeld, “Single-molecule photophysics of oxazines on DNA and its application in a FRET switch,” Photochem. Photobiol. Sci.8, 486–496 (2009). [CrossRef] [PubMed]
  12. T. Dertinger, R. Colyera, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A.106, 22287–22292 (2009). [CrossRef] [PubMed]
  13. S. J. Holden, S. Uphoff, and A.N. Kapanidis, “DAOSTORM: an algorithm for high-density super-resolution microscopy,” Nat. Methods8, 279–280 (2011). [CrossRef] [PubMed]
  14. S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9, 195–200 (2012). [CrossRef]
  15. T. Cordes, A. Maiser, C. Steinhauer, L. Schermelleh, and P. Tinnefeld, “Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy,” Phys. Chem. Chem. Phys.13, 6699–6709 (2011). [CrossRef] [PubMed]
  16. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science320, 1332–1336 (2008). [CrossRef] [PubMed]
  17. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319, 810–813 (2008). [CrossRef] [PubMed]
  18. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047–1052 (2008). [CrossRef] [PubMed]
  19. E. Nogales and G. Alushin, “4.6 Tubulin and microtubule structure: mechanistic insights into dynamic instability and its biological relevance,” in Comprehensive Biophysics, E. H. Egelman, ed. (Elsevier, 2012), pp. 72–92. [CrossRef]
  20. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002). [CrossRef] [PubMed]
  21. G. Dempsey, J. Vaughan, K. Chen, M. Bates, and X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods8, 1027–1036 (2011). [CrossRef] [PubMed]
  22. K. Valnes and P. Brandtzaeg, “Retardation of immunofluorescence fading during microscopy,” J. Histochem. Cytochem.33, 755–761 (1985). [CrossRef] [PubMed]
  23. J. Widengren, A. Chmyrov, C. Eggeling, P. Löfdahl, and C. A. M. Seidel, “Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy,” J. Phys. Chem. A111, 429–444 (2007). [CrossRef] [PubMed]
  24. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5, 527–529 (2008). [CrossRef] [PubMed]
  25. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A.106, 3125–3130 (2009). [CrossRef] [PubMed]
  26. T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell, “‘2,2’-Thiodiethanol: A new water soluble mounting medium for high resolution optical microscopy” Microsc. Res. Tech.70, 1–9 (2006). [CrossRef]
  27. J. Fölling, V. Belov, R. Medda, A. Schönle, A. Egner, C. Eggeling, M. Bossi, and S. W. Hell, “Photochromic rhodamines provide nanoscopy with optical sectioning,” Angew. Chem. Int. Ed.46, 6266–6270 (2007). [CrossRef]
  28. P. Gönczy, “Towards a molecular architecture of centriole assembly,” Nat. Rev. Mol. Cell Biol.13, 425–435 (2012). [CrossRef] [PubMed]
  29. S. Lawo, M. Hasegan, G. D. Gupta, and L. Pelletier, “Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material,” Nat. Cell. Biol.14, 1148–1158 (2012). [CrossRef] [PubMed]
  30. I. H. Stein, S. Capone, J. H. Smit, F. Baumann, T. Cordes, and P. Tinnefeld, “Linking single-molecule blinking to chromophore structure and redox potentials,” ChemPhysChem13, 931–937 (2012). [CrossRef]
  31. A. Lampe, V. J. Haucke, S. Sigrist, M. Heileman, and J. Schmoranzer, “Multi-colour direct STORM with red emitting carbocyanines,” Biol. Cell104, 229–237 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited