OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 917–923

Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone

Nobuhito Nango, Shogo Kubota, Akihisa Takeuchi, Yoshio Suzuki, Wataru Yashiro, Atsushi Momose, and Koichi Matsuo  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 6, pp. 917-923 (2013)
http://dx.doi.org/10.1364/BOE.4.000917


View Full Text Article

Enhanced HTML    Acrobat PDF (2762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The three-dimensional network of lacunae and canaliculi that regulates metabolism in bone contains osteocytes and their dendritic processes. We constructed a synchrotron radiation X-ray microscope for sequential tomography of mouse tibia first by using a Talbot interferometer to detect the degree of bone mineralization and then by using absorption contrast under a slightly defocused setting to enhance outline contrast thereby visualizing structures of the osteocyte lacuno-canalicular network. The resultant pair of tomograms was precisely aligned with each other, allowing evaluation of mineral density in the vicinity of each osteocyte lacuna and canaliculus over the entire thickness of the cortical bone. Thus, multiscan microscopic X-ray tomography is a powerful tool for analyzing bone mineralization in relation to the lacuno-canalicular network at the submicron resolution level.

© 2013 OSA

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(110.6960) Imaging systems : Tomography
(180.7460) Microscopy : X-ray microscopy
(340.6720) X-ray optics : Synchrotron radiation

ToC Category:
X-Ray Microscopy and Imaging

History
Original Manuscript: April 9, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 16, 2013
Published: May 20, 2013

Citation
Nobuhito Nango, Shogo Kubota, Akihisa Takeuchi, Yoshio Suzuki, Wataru Yashiro, Atsushi Momose, and Koichi Matsuo, "Talbot-defocus multiscan tomography using the synchrotron X-ray microscope to study the lacuno-canalicular network in mouse bone," Biomed. Opt. Express 4, 917-923 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-6-917


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Matsuo and N. Irie, “Osteoclast-osteoblast communication,” Arch. Biochem. Biophys.473(2), 201–209 (2008). [CrossRef] [PubMed]
  2. L. F. Bonewald, “The amazing osteocyte,” J. Bone Miner. Res.26(2), 229–238 (2011). [CrossRef] [PubMed]
  3. L. D. You, S. Weinbaum, S. C. Cowin, and M. B. Schaffler, “Ultrastructure of the osteocyte process and its pericellular matrix,” Anat. Rec. A Discov. Mol. Cell. Evol. Biol.278A(2), 505–513 (2004). [CrossRef] [PubMed]
  4. L. F. Bélanger, “Osteocytic osteolysis,” Calcif. Tissue Res.4(1), 1–12 (1969). [CrossRef] [PubMed]
  5. A. Teti and A. Zallone, “Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited,” Bone44(1), 11–16 (2009). [CrossRef] [PubMed]
  6. H. Qing, L. Ardeshirpour, P. Divieti Pajevic, V. Dusevich, K. Jähn, S. Kato, J. Wysolmerski, and L. F. Bonewald, “Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation,” J. Bone Miner. Res.27(5), 1018–1029 (2012). [CrossRef] [PubMed]
  7. J. J. Wysolmerski, “Osteocytes remove and replace perilacunar mineral during reproductive cycles,” Bone54(2), 230–236 (2013). [CrossRef] [PubMed]
  8. C. Ciani, S. B. Doty, and S. P. Fritton, “An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy,” Bone44(5), 1015–1017 (2009). [CrossRef] [PubMed]
  9. H. Kamioka, Y. Kameo, Y. Imai, A. D. Bakker, R. G. Bacabac, N. Yamada, A. Takaoka, T. Yamashiro, T. Adachi, and J. Klein-Nulend, “Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model,” Integr. Biol.4(10), 1198–1206 (2012). [CrossRef] [PubMed]
  10. P. Schneider, M. Meier, R. Wepf, and R. Müller, “Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network,” Bone47(5), 848–858 (2010). [CrossRef] [PubMed]
  11. A. Pacureanu, M. Langer, E. Boller, P. Tafforeau, and F. Peyrin, “Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup,” Med. Phys.39(4), 2229–2238 (2012). [CrossRef] [PubMed]
  12. J. C. Andrews, E. Almeida, M. C. H. van der Meulen, J. S. Alwood, C. Lee, Y. Liu, J. Chen, F. Meirer, M. Feser, J. Gelb, J. Rudati, A. Tkachuk, W. Yun, and P. Pianetta, “Nanoscale X-ray microscopic imaging of mammalian mineralized tissue,” Microsc. Microanal.16(03), 327–336 (2010). [CrossRef] [PubMed]
  13. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic X-ray computed tomography at the nanoscale,” Nature467(7314), 436–439 (2010). [CrossRef] [PubMed]
  14. M. Langer, A. Pacureanu, H. Suhonen, Q. Grimal, P. Cloetens, and F. Peyrin, “X-ray phase nanotomography resolves the 3D human bone ultrastructure,” PLoS ONE7(8), e35691 (2012). [CrossRef] [PubMed]
  15. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological Imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006). [CrossRef]
  16. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med.2(4), 473–475 (1996). [CrossRef] [PubMed]
  17. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-ray Talbot interferometry,” Jpn. J. Appl. Phys.42(Part 2, No. 7B), L866–L868 (2003). [CrossRef]
  18. Y. Takeda, W. Yashiro, T. Hattori, A. Takeuchi, Y. Suzuki, and A. Momose, “Differential phase X-ray imaging microscopy with X-ray Talbot interferometer,” Appl. Phys. Express1, 117002 (2008). [CrossRef]
  19. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  20. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  21. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11(19), 2289–2302 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited