OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 6 — Jun. 1, 2013
  • pp: 938–949

Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study

Noah Bedard, Richard A. Schwarz, Aaron Hu, Vijayashree Bhattar, Jana Howe, Michelle D. Williams, Ann M. Gillenwater, Rebecca Richards-Kortum, and Tomasz S. Tkaczyk  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 6, pp. 938-949 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical imaging and spectroscopy have emerged as effective tools for detecting malignant changes associated with oral cancer. While clinical studies have demonstrated high sensitivity and specificity for detection, current devices either interrogate a small region or can have reduced performance for some benign lesions. We describe a snapshot imaging spectrometer that combines the large field-of-view of widefield imaging with the diagnostic strength of spectroscopy. The portable device can stream RGB images at 7.2 frames per second and record both autofluorescence and reflectance spectral datacubes in < 1 second. We report initial data from normal volunteers and oral cancer patients.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Multimodal Imaging

Original Manuscript: April 4, 2013
Revised Manuscript: May 22, 2013
Manuscript Accepted: May 22, 2013
Published: May 24, 2013

Noah Bedard, Richard A. Schwarz, Aaron Hu, Vijayashree Bhattar, Jana Howe, Michelle D. Williams, Ann M. Gillenwater, Rebecca Richards-Kortum, and Tomasz S. Tkaczyk, "Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study," Biomed. Opt. Express 4, 938-949 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin.60(5), 277–300 (2010). [CrossRef] [PubMed]
  2. A. K. Chaturvedi, E. A. Engels, R. M. Pfeiffer, B. Y. Hernandez, W. Xiao, E. Kim, B. Jiang, M. T. Goodman, M. Sibug-Saber, W. Cozen, L. Liu, C. F. Lynch, N. Wentzensen, R. C. Jordan, S. Altekruse, W. F. Anderson, P. S. Rosenberg, and M. L. Gillison, “Human papillomavirus and rising oropharyngeal cancer incidence in the United States,” J. Clin. Oncol.29(32), 4294–4301 (2011). [CrossRef] [PubMed]
  3. J. B. Epstein, P. Güneri, H. Boyacioglu, and E. Abt, “The limitations of the clinical oral examination in detecting dysplastic oral lesions and oral squamous cell carcinoma,” J. Am. Dent. Assoc.143(12), 1332–1342 (2012). [PubMed]
  4. D. P. Slaughter, H. W. Southwick, and W. Smejkal, “Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin,” Cancer6(5), 963–968 (1953). [CrossRef] [PubMed]
  5. I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res.14(8), 2396–2404 (2008). [CrossRef] [PubMed]
  6. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt.47(6), 825–834 (2008). [CrossRef] [PubMed]
  7. R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer115(8), 1669–1679 (2009). [CrossRef] [PubMed]
  8. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma,” Cancer97(7), 1681–1692 (2003). [CrossRef] [PubMed]
  9. D. Roblyer, C. Kurachi, V. Stepanek, M. D. Williams, A. K. El-Naggar, J. J. Lee, A. M. Gillenwater, and R. Richards-Kortum, “Objective detection and delineation of oral neoplasia using autofluorescence imaging,” Cancer Prev. Res. (Phila.)2(5), 423–431 (2009). [CrossRef] [PubMed]
  10. C. F. Poh, L. Zhang, D. W. Anderson, J. S. Durham, P. M. Williams, R. W. Priddy, K. W. Berean, S. Ng, O. L. Tseng, C. MacAulay, and M. P. Rosin, “Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients,” Clin. Cancer Res.12(22), 6716–6722 (2006). [CrossRef] [PubMed]
  11. C. F. Poh, S. P. Ng, P. M. Williams, L. Zhang, D. M. Laronde, P. Lane, C. Macaulay, and M. P. Rosin, “Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device,” Head Neck29(1), 71–76 (2007). [CrossRef] [PubMed]
  12. K. Matsumoto, “Detection of potentially malignant and malignant lesions of oral cavity using autofluorescence visualization device,” Kokubyo Gakkai Zasshi78(2), 73–80 (2011). [PubMed]
  13. C. F. Poh, C. E. MacAulay, D. M. Laronde, P. M. Williams, L. Zhang, and M. P. Rosin, “Squamous cell carcinoma and precursor lesions: diagnosis and screening in a technical era,” Periodontol. 200057(1), 73–88 (2011). [CrossRef] [PubMed]
  14. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002). [CrossRef] [PubMed]
  15. D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, “Multispectral optical imaging device for in vivo detection of oral neoplasia,” J. Biomed. Opt.13(2), 024019 (2008). [CrossRef] [PubMed]
  16. D. Roblyer, C. Kurachi, V. Stepanek, R. A. Schwarz, M. D. Williams, A. K. El-Naggar, J. J. Lee, A. M. Gillenwater, and R. Richards-Kortum, “Comparison of multispectral wide-field optical imaging modalities to maximize image contrast for objective discrimination of oral neoplasia,” J. Biomed. Opt.15(6), 066017 (2010). [CrossRef] [PubMed]
  17. D. Roblyer, C. Kurachi, A. Gillenwater, and R. Richards-Kortum, “In vivo fluorescence hyperspectral imaging of oral neoplasia,” Proc. SPIE7169, 71690J, 71690J-10 (2009). [CrossRef]
  18. L. Gao, A. Elliot, R. Kester, N. Hagen, D. Piston, and T. Tkaczyk, “Real-time hyperspectral imaging of pancreatic β-cell dynamics with Image Mapping Spectrometer (IMS),” in Optics in the Life Sciences, OSA Technical Digest (CD) (Optical Society of America, 2011), paper BWC4.
  19. N. Hagen, N. Bedard, A. Mazhar, S. Konecky, B. Tromberg, and T. Tkaczyk, “Spectrally-resolved imaging of dynamic turbid media,” Proc. SPIE7892, 789206, 789206-7 (2011). [CrossRef]
  20. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express3(1), 48–54 (2012). [CrossRef] [PubMed]
  21. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011). [CrossRef] [PubMed]
  22. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express18(14), 14330–14344 (2010). [CrossRef] [PubMed]
  23. N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng.51(11), 111711 (2012). [CrossRef] [PubMed]
  24. D. L. Edelstein, F. M. Giardiello, A. Basiri, L. M. Hylind, K. Romans, J. E. Axilbund, M. Cruz-Correa, and J. C. Ramella-Roman, “A new phenotypic manifestation of familial adenomatous polyposis,” Fam. Cancer10(2), 309–313 (2011). [CrossRef] [PubMed]
  25. M. E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. E. Fraser, “Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,” Biotechniques31(6), 1272–1278 (2001). [PubMed]
  26. G. Vane, R. Green, T. Chrien, H. Enmark, E. Hansen, and W. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ.44(2–3), 127–143 (1993). [CrossRef]
  27. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  28. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  29. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited